445 research outputs found

    Spatiotemporal heterogeneity of water flowpaths controls dissolved organic carbon sourcing in a snow-dominated, headwater catchment

    Get PDF
    The non-uniform distribution of water in snowdrift-driven systems can lead to spatial heterogeneity in vegetative communities and soil development, as snowdrifts may locally increase weathering. The focus of this study is to understand the coupled hydrological and biogeochemical dynamics in a heterogeneous, snowdrift-dominated headwater catchment (Reynolds Mountain East, Reynolds Creek Critical Zone Observatory, Idaho, USA). We determine the sources and fluxes of stream water and dissolved organic carbon (DOC) at this site, deducing likely flowpaths from hydrometric and hydrochemical signals of soil water, saprolite water, and groundwater measured through the snowmelt period and summer recession. We then interpret flowpaths using end-member mixing analysis in light of inferred subsurface structure derived from electrical resistivity and seismic velocity transects. Streamwater is sourced primarily from groundwater (averaging 25% of annual streamflow), snowmelt (50%), and water traveling along the saprolite/bedrock boundary (25%). The latter is comprised of the prior year\u27s soil water, which accumulates DOC in the soil matrix through the summer before flushing to the saprolite during snowmelt. DOC indices suggest that it is sourced from terrestrial carbon, and derives originally from soil organic carbon (SOC) before flushing to the saprolite/bedrock boundary. Multiple subsurface regions in the catchment appear to contribute differentially to streamflow as the season progresses; sources shift from the saprolite/bedrock interface to deeper bedrock aquifers from the snowmelt period into summer. Unlike most studied catchments, lateral flow of soil water during the study year is not a primary source of streamflow. Instead, saprolite and groundwater act as integrators of soil water that flows vertically in this system. Our results do not support the flushing hypothesis as observed in similar systems and instead indicate that temporal variation in connectivity may cause the unexpected dilution behavior displayed by DOC in this catchment

    A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    Get PDF
    A high-pressure atomic force microscope (AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO{sub 2} (scCO{sub 2}) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ∌350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO{sub 2} , precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO{sub 3}) mineral surface in scCO{sub 2}; both single, monatomic steps and dynamic processes occurring on the (10{overbar 1}4) surface are presented. This new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure

    The Fundamental Diagram of Pedestrian Movement Revisited

    Full text link
    The empirical relation between density and velocity of pedestrian movement is not completely analyzed, particularly with regard to the `microscopic' causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the normal movement of pedestrians along a line (single-file movement). This article presents experimental results for this system under laboratory conditions and discusses the following observations: The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-file movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation at the density domain 1m−2<ρ<5m−21 m^{-2}<\rho<5 m^{-2}. In addition we test a procedure for automatic recording of pedestrian flow characteristics. We present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure

    Note: CO2-mineral dissolution experiments using a rocking autoclave and a novel titanium reaction cell

    Get PDF
    A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional “flexible gold/titanium cell” approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published dat

    The Ketogenic Diet Is an Effective Adjuvant to Radiation Therapy for the Treatment of Malignant Glioma

    Get PDF
    INTRODUCTION: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCalÂź (KC) is a nutritionally complete, commercially available 4:1 (fat:carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas. METHODS: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging. RESULTS: Animals fed KC had elevated levels of ÎČ-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days. CONCLUSIONS: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change &#8805;2) and significantly altered in GBM (p &#8804; 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Enhanced empirical data for the fundamental diagram and the flow through bottlenecks

    Full text link
    In recent years, several approaches for modelling pedestrian dynamics have been proposed and applied e.g. for design of egress routes. However, so far not much attention has been paid to their 'quantitative' validation. This unsatisfactory situation belongs amongst others on the uncertain and contradictory experimental data base. The fundamental diagram, i.e. the density-dependence of the flow or velocity, is probably the most important relation as it connects the basic parameter to describe the dynamic of crowds. But specifications in different handbooks as well as experimental measurements differ considerably. The same is true for the bottleneck flow. After a comprehensive review of the experimental data base we give an survey of a research project, including experiments with up to 250 persons performed under well controlled laboratory conditions. The trajectories of each person are measured in high precision to analyze the fundamental diagram and the flow through bottlenecks. The trajectories allow to study how the way of measurement influences the resulting relations. Surprisingly we found large deviation amongst the methods. These may be responsible for the deviation in the literature mentioned above. The results are of particular importance for the comparison of experimental data gained in different contexts and for the validation of models.Comment: A contribution to: Pedestrian and Evacuation Dynamics 2008 (Springer) 12 pages, 7 figure
    • 

    corecore