84 research outputs found

    Investigation of the mechanism of radical propagation in E. coli ribonucleotide reductase by site-specific incorporation of unnatural amino acids

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, February 2008.Vita.Includes bibliographical references.Inside the cell, ribonucleotide reductases (RNRs) are responsible for the conversion of nucleotides to 2'-deoxynucleotides, an essential step in DNA biosynthesis and repair. The E. coli RNR is the best studied RNR to date and consists of two protein subunits, a2 and P2. a2 is the site of nucleotide reduction and 02 contains a diiron tyrosyl radical (Y122*) cofactor. Each turnover requires radical propagation from the Y122* in 32 to the active site of a2 over 35 A. The mechanism of this unprecedented, long-range radical propagation step is poorly understood. Based on structural studies, a pathway of aromatic residues has been proposed to participate in this process. Site-directed mutants of these residues have been uninformative. In an effort to understand radical propagation, we have employed expressed protein ligation and suppressor tRNA/aminoacyl-tRNA synthetase (RS) methodologies to site-specifically insert unnatural tyrosine analogues into 12 and a2, at residues believed to be involved. On the basis of results with the radical traps 3,4-dihydroxyphenylalanine (DOPA) and 3-aminotyrosine (NH2Y), which we have incorporated into 32 and a2, respectively, and a series of fluorotyrosines (FnYs, n=2, 3, 4), which we have established as probes for proton-coupled electron transfer reactions and incorporated into 12, we propose a mechanism for radical transfer in RNR. We show that binding of substrate and effector are essential for control and gating of radical propagation. We further demonstrate that three Ys, 12-Y356, a2-Y731 and a2-Y730, are redox-active and participate in hole propagation. The NH2Y. observed with NH2Y-a2s likely constitutes the first observation of a transiently oxidized intermediate during active radical propagation. In 12, Y356 participates in radical transfer by an orthogonal proton-coupled electron transfer mechanism, where long-range electron transfer is coupled to short-range, off-pathway proton transfer.(cont) Within a2, Y731 and Y730o participate by a hydrogen atom transfer mechanism where the proton and electron originate from and arrive at the same moiety. We also establish the positions of these three Ys in the a2/32 complex and present direct evidence for the reversible nature of radical propagation.by Mohammad R. Seyedsayamdost.Ph.D

    The Chemistry and Biology of Bactobolin: A 10-Year Collaboration with Natural Product Chemist Extraordinaire Jon Clardy

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Natural Products, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see doi.org/10.1021/acs.jnatprod.9b01237.Bactobolin is a hybrid natural product with potent cytotoxic activity. Its production from Burkholderia thailandensis was reported as part of a collaboration between the Greenberg and Clardy laboratories in 2010. The collaboration sparked a series of studies leading to the discovery of new analogues and associated structure–activity relationships, the identification of the bactobolin biosynthetic gene cluster and assembly of its unusual amino acid building block, the molecular target of and resistance to the antibiotic, and finally an X-ray crystal structure of the ribosome–bactobolin complex. Herein, we review the collaborations that led to our current understanding of the chemistry and biology of bactobolin

    A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone

    Get PDF
    Copyright © 2015, American Society for Microbiology. All Rights Reserved.Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. One of the orphans, MalR, is genetically linked to the mal gene cluster, which encodes enzymes required for production of the cytotoxic polyketide malleilactone. Under normal laboratory conditions the mal gene cluster is silent; however, antibiotics like trimethoprim induce mal transcription. We show that trimethoprim-dependent induction of the mal genes requires MalR. MalR has all of the conserved amino acid residues characteristic of AHL-responsive LuxR homologs, but in B. thailandensis, MalR activation of malleilactone synthesis genes is not responsive to AHLs. MalR can activate transcription from the mal promoter in E. coli without addition of AHLs or trimethoprim. Expression of malR in B. thailandensis is induced by trimethoprim. Our data indicate that MalR binds to a lux box-like element in the mal promoter and activates transcription of the mal genes in an AHL-independent manner. Antibiotics like trimethoprim appear to activate mal gene expression indirectly by somehow activating malR expression. MalR activation of the mal genes represents an example of a LuxR homolog that is not a receptor for an AHL quorum-sensing signal. Our evidence is consistent with the idea that mal gene activation depends solely on sufficient transcription of the malR gene

    Bactobolin Resistance Is Conferred by Mutations in the L2 Ribosomal Protein

    Get PDF
    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e)

    Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer

    Get PDF
    The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or “hole” over a distance of ~35 Å from the stable diferric/tyrosyl-radical (Y[subscript 122]•) cofactor in the β subunit to cysteine 439 (C[subscript 439]) in the active site of the α subunit. This long-range, intersubunit electron transfer occurs by a multistep “hopping” mechanism via formation of transient amino acid radicals along a specific pathway and is thought to be conformationally gated and coupled to local proton transfers. Whereas constituent amino acids of the hopping pathway have been identified, details of the proton-transfer steps and conformational gating within the β sununit have remained obscure; specific proton couples have been proposed, but no direct evidence has been provided. In the key first step, the reduction of Y[subscript 122]• by the first residue in the hopping pathway, a water ligand to Fe[subscript 1] of the diferric cluster was suggested to donate a proton to yield the neutral Y[subscript 122]. Here we show that forward radical translocation is associated with perturbation of the Mössbauer spectrum of the diferric cluster, especially the quadrupole doublet associated with Fe[subscript 1]. Density functional theory (DFT) calculations verify the consistency of the experimentally observed perturbation with that expected for deprotonation of the Fe[subscript 1]-coordinated water ligand. The results thus provide the first evidence that the diiron cluster of this prototypical class Ia RNR functions not only in its well-known role as generator of the enzyme’s essential Y[subscript 122]•, but also directly in catalysis.National Institutes of Health (U.S.) (GM-29595

    Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp. v4

    Get PDF
    Studying the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores - soluble, low molecular weight compounds - have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition for acquiring iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of 'odd' siderophores can reveal the evolutionary strategy that led to their creation. Here, we here report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholerae vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.This work was supported by the National Institutes of Health (Grants GM82137 to R.K., and AI057159 and GM086258 to J.C.). M.R.S. acknowledges support from the NIH Pathway to Independence Award (Grant 1K99 GM098299-01). S.C. and M.J.V. acknowledge support from the Portuguese Foundation for Science and Technology (PhD Grant SFRH/BD/38298/2007 to S.C.; Project PTDC/EBB-EBI/104263/2008 to M.J.V.)
    corecore