9 research outputs found

    Hollow alumina nanospheres as novel catalyst for the conversion of methanol to dimethyl ether

    Get PDF
    This paper investigates hollow and porous alumina nanospheres that were previously synthesized to be used for the dehydration of methanol to dimethyl ether (DME). As hollow nanostructures possess characteristics such as low density and high surface to volume ratio, their catalytic activity between hollow and porous structure is compared. For this purpose, three most important parameters (acidity, temperature and weight hourly space velocity (WHSV)) affecting the performance of these catalysts were investigated. The catalysts were characterized by scanning electron microscopy (SEM), BET, X-ray diffraction (XRD), and the temperature programmed desorption of ammonia (NH3-TPD) techniques. Results show that the optimum operating condition for hollow alumina nanosphere can be achieved at temperature of 275 ÂșC and WHSV of 20 h-1 compared with operating condition for porous alumina at temperature of 325 ÂșC and WHSV of 20 h-1

    Assessing non-Mendelian inheritance in inherited axonopathies

    Get PDF
    PURPOSE: Inherited axonopathies (IA) are rare, clinically and genetically heterogeneous diseases that lead to length-dependent degeneration of the long axons in central (hereditary spastic paraplegia [HSP]) and peripheral (Charcot–Marie–Tooth type 2 [CMT2]) nervous systems. Mendelian high-penetrance alleles in over 100 different genes have been shown to cause IA; however, about 50% of IA cases do not receive a genetic diagnosis. A more comprehensive spectrum of causative genes and alleles is warranted, including causative and risk alleles, as well as oligogenic multilocus inheritance. METHODS: Through international collaboration, IA exome studies are beginning to be sufficiently powered to perform a pilot rare variant burden analysis. After extensive quality control, our cohort contained 343 CMT cases, 515 HSP cases, and 935 non-neurological controls. We assessed the cumulative mutational burden across disease genes, explored the evidence for multilocus inheritance, and performed an exome-wide rare variant burden analysis. RESULTS: We replicated the previously described mutational burden in a much larger cohort of CMT cases, and observed the same effect in HSP cases. We identified a preliminary risk allele for CMT in the EXOC4 gene (p value= 6.9 × 10-6, odds ratio [OR] = 2.1) and explored the possibility of multilocus inheritance in IA. CONCLUSION: Our results support the continuing emergence of complex inheritance mechanisms in historically Mendelian disorders

    Some High Nitrogen Derivatives of Nitrotetrazolylimidazole as New High Performance Energetic Compounds

    No full text
    This work introduces important properties of some new derivatives of nitrotetrazolyl-imidazole as high nitrogen energetic compounds, which are evaluated and discussed using some reliable models. The predicted properties are also compared with 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX). It is shown that some of these compounds can be seen as interesting organic explosives with relatively high performance and low sensitivity, which could be used for important industrial applications. Since some of the new compounds have a relatively good oxygen balance, the calculated specific impulses confirm that these compounds can be considered as suitable oxidizers in solid propellants

    The Advantages and Shortcomings of Using Nano-sized Energetic Materials

    No full text
    Energetic materials are substances that can store chemical energy in their chemical bonds. An ideal energetic material is a substance with high performance, safety and shelf life. Many recent researches have concentrated on the synthesis or the development of new energetic materials with optimized properties, such as thermal stability, sensitivity and burn rate. The reduction of the particle size of energetic materials from micron to nano-sized is one of the suitable approaches for obtaining desirable properties. Recent progress on the reduction of the particle size of energetic materials is reviewed in this work. The effects of nano-sized particles on the performance of energetic compounds are also investigated

    Author Correction: Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes (Nature Genetics, (2020), 52, 5, (473-481), 10.1038/s41588-020-0615-4)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes

    No full text
    Here we report biallelic mutations in the sorbitol dehydrogenase gene (SORD) as the most frequent recessive form of hereditary neuropathy. We identified 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state. SORD is an enzyme that converts sorbitol into fructose in the two-step polyol pathway previously implicated in diabetic neuropathy. In patient-derived fibroblasts, we found a complete loss of SORD protein and increased intracellular sorbitol. Furthermore, the serum fasting sorbitol levels in patients were dramatically increased. In Drosophila, loss of SORD orthologs caused synaptic degeneration and progressive motor impairment. Reducing the polyol influx by treatment with aldose reductase inhibitors normalized intracellular sorbitol levels in patient-derived fibroblasts and in Drosophila, and also dramatically ameliorated motor and eye phenotypes. Together, these findings establish a novel and potentially treatable cause of neuropathy and may contribute to a better understanding of the pathophysiology of diabetes

    Variation in SIPA1L2 is correlated with phenotype modification in Charcot- Marie- Tooth disease type 1A

    No full text
    Objective Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. Methods We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. Results We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 x 10(-7)). Coimmunoprecipitation and mass spectroscopy studies identified beta-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. Interpretation SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.Genetics of disease, diagnosis and treatmen
    corecore