2 research outputs found

    Spin valves and spin-torque oscillators with perpendicualr magnetic anisotropy

    No full text
    Researches in spintronics, especially those remarkably classified in the current induced spin-transfer torque (STT) framework, circumvent challenges with different materials and geometries. Perpendicular magnetic anisotropy (PMA) materials are showing capability of holding promise to be employed in STT based spintronics elements, e.g. spin-torque oscillators (STOs), STT-magnetoresistive random access memories (STT-MRAMs) and current induced domain wall motion elements. This dissertation presents experimental investigations into developing sputter deposited Co/Ni multilayers (MLs) with PMA and employs these materials in nano-contact STOs (NC-STOs) based on giant magnetoresistance (GMR) effect and in pseudo-spin-valve (PSV) structures. The magnetostatic stray field coupling plays an important role in perpendicular PSVs. The temperature dependent coupling mechanism recommends that this coupling can be tailored, by i) the saturation magnetization and coercivity of the individual layers, ii) the coercivity difference in layers, and iii) the GMR spacer thickness, to get a well decoupled and distinguishable switching response. Moreover, this thesis focused on the implementation and detailed characterization of NC-STOs with strong PMA Co/Ni ML free layers and in-plane Co reference layers as orthogonal (Ortho) magnetic geometry in so-called Ortho-NC-STOs. The primary target of reaching record high STO frequencies, 12 GHz, at close to zero field, 0.02 Tesla, was achieved. However, in large external fields, &gt;0.4 Tesla, an entirely new magnetodynamic object, a “magnetic droplet”, theoretically predicted in 1977, was discovered experimentally. Detailed experiments, combined with micromagnetic simulations, demonstrate the formation of a magnetic droplet with a partially reversed magnetization direction underneath the NC, and a zone of large amplitude precession in a region bounding the reversed magnetization. The magnetic droplet exhibits a very rich dynamics, including i) auto-modulation as a combine of droplet frequency with a slow time evolution (few GHz) of un-centering the droplet mode under the NC, ii) droplet breathing as reversible deformation of droplet mode with ½ droplet frequency. All observation of droplet opens a new mechanism of excitation for future fundamental studies as well as experiments especially for domain wall electronics and nano-scopic magnetism.QC 20121119</p

    Improving Fire Retardancy of Beech Wood by Graphene

    No full text
    The aim of this paper was to improve the fire retardancy of beech wood by graphene. Six fire properties, namely time to onset of ignition, time to onset of glowing, back-darkening time, back-holing time, burnt area and weight loss were measured using a newly developed apparatus with piloted ignition. A set of specimens was treated with nano-wollastonite (NW) for comparison with the results of graphene-treated specimens. Graphene and NW were mixed in a water-based paint and brushed on the front and back surface of specimens. Results demonstrated significant improving effects of graphene on times to onset of ignition and glowing. Moreover, graphene drastically decreased the burnt area. Comparison between graphene- and NW-treated specimens demonstrated the superiority of graphene in all six fire properties measured here. Fire retardancy impact of graphene was attributed to its very low reaction ability with oxygen, as well as its high and low thermal conductivity in in-plane and cross-section directions, respectively. The improved fire-retardancy properties by the addition of graphene in paint implied its effectiveness in hindering the spread of fire in buildings and structures, providing a longer timespan to extinguish a fire, and ultimately reducing the loss of life and property. Based on the improvements in fire properties achieved in graphene-treated specimens, it was concluded that graphene has a great potential to be used as a fire retardant in solid wood species
    corecore