7 research outputs found

    The effect of berberine nanomicells on hepatic cirrhosis in bile duct ligated rats

    Get PDF
    The present study was designed to investigate the possible hepatoprotective effect of berberine (BBR) nano micelles on liver cirrhosis induced by bile duct ligation model (BDL) in male rats. Introduction: The anti-fibrotic effect of chronic berberine (BBR) had previously demonstrated in a rat model of bile duct ligation (BDL) - induced liver fibrosis. As a result, the aim of present study was to investigate the possible hepatoprotective effect of BBR nanomicelles on liver cirrhosis induced by Bile duct ligation model (BDL) in male rats. Methods and Results: Male Wistar rats were divided into 7 groups (n= 6) including sham-operated, BDL + saline, BDL + nanoBBR (50 mg/kg, p.o.), BDL + nanomicelles, BDL + BBR (50 and 100 mg/kg, p.o.), BDL + silymarin (100 mg/kg, p.o.). After 21 days of drugs' treatments following bile duct ligateation, the serum and tissue levels of some hepatic markers were measured and pathologic evaluations performed.BDL could markedly increase aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL) serum levels and tissue tumor necrosis factor-alpha (TNF-α), level along with reductions in tissue levels of glutathione (GSH), superoxide dismutase (SOD) and total protein levels. On the other hand, BBR nanomicelles (50 mg/kg, p.o.) and silymarin (100 mg/kg, p.o.) markedly decreased the serum levels of AST and ALT while enhanced GSH level. In addition, BBR nanomicelles (50 mg/kg, p.o.), silymarin (100 mg/kg, p.o.) and BBR (100 mg/kg, p.o.) groups showed a considerable increase in SOD levels. BBR nanomicelles (50 mg/kg, p.o.) significantly lowered TNF-α level. In addition, nanoBBR group prevented liver cirrhosis in histopathologic analysis.  Conclusions:Therefore, formulation of BBR nanomicelles may represent a good approach to enhance the effect of BBR in liver injuries

    The effect of berberine nanomicelles on hepatic cirrhosis in bile duct-ligated rats

    Get PDF
    Objective (s): The anti-fibrotic effect of chronic berberine (BBR) had demonstrated previously in a rat model of bile duct ligation (BDL). The aim of present study was to investigate hepatoprotective effect of BBR nanomicelles on liver cirrhosis induced by BDL in male rats.Materials and methods: After 21 days of drugs’ treatments, the serum and tissue levels of hepatic markers were measured and pathologic evaluations performed.Results: BDL could markedly increase aspartate aminotransferase (AST), alanine aminotransferase (ALT), LDH, and total bilirubin (TBIL) serum levels and tissue tumor necrosis factor-alpha (TNF-α) level along with reductions in tissue levels of key antioxidants glutathione (GSH) and superoxide dismutase (SOD) as well as total protein. On the other hand, silymarin (100 mg/kg, p.o.), BBR (100 mg/kg) and BBR nanomicelles (50 mg/kg, p.o.) markedly decreased AST and ALT while enhanced GSH. In addition, BBR nanomicelles (50 mg/kg, p.o.), silymarin (100 mg/kg, p.o.) and BBR (100 mg/kg, p.o.) groups showed a considerable increase in SOD. BBR nanomicelles (50 mg/kg, po.) significantly lowered TNF-α. In addition, nanoBBR treatment prevented liver cirrhosis in histopathologic analysis.Conclusion: Formulation of BBR may represent a worthy approach to enhance the effect of it in liver injuries

    Nanotechnology in Wound Healing; Semisolid Dosage Forms Containing Curcumin-Ampicillin Solid Lipid Nanoparticles, in-Vitro, Ex-Vivo and in-Vivo Characteristics

    Get PDF
    Purpose: Wound healing is a natural biologic process, but the duration of it may take too long. Trying to shorten this process is one of the challenges for scientists. Many technologies were applied to achieve this goal as well as nanotechnology. In this study semi solid formulations containing curcumin and ampicillin solid lipid nanoparticles (SLNs) were prepared to evaluate as burn wound healing agent. Methods: Curcumin as an anti-inflammatory and anti-bacterial agent and ampicillin as an antibiotic were applied. In-vitro and in-vivo evaluations were carried out. Particle size, loading efficiency, release profile, morphology and anti-bacterial efficacy of desired nanoparticles were evaluated at first. Then the remaining of the antibacterial effect in semi solid preparations was studied. Animal studies for both toxicology using rabbits and skin burn model using rats were designed. Pathology studies after applying of formulations was done too. Results: Desired nanoparticles were spherical in shape and particle size in range of 112-121 nm, with low zeta potential. For increasing stability of particles they were freeze dried using cryoprotectant. Lyophilized particles show no significant size enlargement. Results showed that both ointment and gel preparations have reasonable anti-bacterial effects, both of them cause increasing in the rate of wound healing in comparison with placebos and control groups and none of the formulations showed acute toxicity. Conclusion: It seems that using nanotechnology could shorten wound healing process to reduce treatment costs and increase compliance of patients

    Dermal toxicity of Colloidal Nanosilver in Albino Rabbit: A New Approach to Physicochemical Properties

    No full text
    Objective(s): Silver nanoparticles have been widely used as new potent antimicrobial agents in cosmetic and hygienic products, as well as in new medical devices. Serious concerns have been expressed on the potential health risks of dermal applications of nanosilver containing consumer products (AgNPs), therefore regulatory health risk assessment has become necessary for the safe usage of AgNPs in biomedical products with special emphasis to their dermal toxicity potentials. We aimed in the present study to compare the dermal toxicity of three different AgNP containing disinfectantsin an albino rabbit model and tried to determine the role of size and other physicochemical properties on their possible dermal toxicity. Methods: After the characterization of all three samples by transmission electron microscopy (TEM), X-Ray Diffraction (XRD) and Dynamic Light Scattering (DLS) , corrosive and irritant potentials  of AgNPs in three different sizes of three colloidal AgNPs were scored by the OECD 404 guideline with necessary modifications and were applied under the specified concentrations via nanosilver skin patches on the shaved skin of young female albino rabbits. All skin reactions were recorded in 3 min as well as in 1, 4, 24, 48 and 72 hours from the application and compared with the control group and followed up for 14 days. Results: Although short-term observations didn’t show any significant changes in the weight of animals and macroscopic  variables, long-term histopathological abnormalities were seen in the skin of all test groups, which was not associated with the size and other physicochemical properties of AgNP samples. The toxicity manifestations were dry skin, scaling in doses lower than 100 ppm and erythema in higher doses up to 4000 ppm which was reversed. Conclusions: This finding creates a new issue in the possible dermal effects of all colloidal AgNPs, containing nano health products, which should be considered in future studies by focusing on other physicochemical properties of AgNPs and possible underlying mechanisms of toxicity by conducting cellular models

    Preparation of a Selective L-Phenylalanine Imprinted Polymer Implicated in Patients with Phenylketonuria

    No full text
    Background: Molecular imprinting is a method for synthesizing polymers with structure-selective adsorption properties with applications such as, selectivity binding, drug delivery systems and anti-bodies. The present study aims at optimizing the preparation of molecularly imprinted polymer (MIP) against l-phenylalanine, in order to increase phenylalanine-binding in Enzymatic Intestinal Simulated Fluid (ESIF). Methods: The MIP for l-phenylalanine, as a water-soluble template, was successfully synthesized without derivatization. Synthesization was done by a UV polymerization method in which methacrylic acid (MAA), as a functional monomer, and ethylene glycol dimethacrylate (EGDMA), as a cross-linker, were used in the presence of five different porogenic solvents including; acetonitrile, tetrahydrofuran (THF), chloroform, toluene and dimethyl sulfoxide (DMSO). The selectivity of the MIP was examined using 19 different amino acids in human serum and was evaluated by HPLC. In addition, morphological studies were conducted using SEM. Results: The results showed that the obtained MIP with acetonitrile had the highest capacity and selectivity compared with other solvents. The data indicated that Phe-binding to MIP was significantly more than the former binding to NIP in EISF (P≀0.05). Moreover, in comparison with NIP and control group, MIP showed a better selectivity and binding for Phe. This could be used for the reduction of Phe in human serum samples of Phenylketonuria. Conclusion: Our findings suggest that the MIP against Phe prepared with acetonitrile, showed a good selectivity and binding, which caused a reduction of blood Phe concentration in enzymatic simulated intestinal fluid and human serum sample of Phenylketonuria
    corecore