85 research outputs found

    Corrigendum: Ethnopharmacological Approaches for Therapy of Jaundice: Part II. Highly Used Plant Species from Acanthaceae, Euphorbiaceae, Asteraceae, Combretaceae, and Fabaceae Families

    Get PDF
    In the original article, there was a mistake in the legend for Figure 4 as published (the spelling of isosilibin was incorrect). The correct legend appears below. In the original article, there was a mistake in Figure 4 as published (CH3 group was missing in the Silybin structure). The corrected Figure 4 appears below. The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way

    A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies

    Get PDF
    Plant extracts have been long used by the traditional healers for providing health benefits and are nowadays suitable ingredient for the production of formulated health products and nutraceuticals. Traditional methods of extraction such as maceration, percolation, digestion, and preparation of decoctions and infusions are now been replaced by advanced extraction methods for increased extraction efficiency and selectivity of bioactive compounds to meet up the increasing market demand. Advanced techniques use different ways for extraction such as microwaves, ultrasound waves, supercritical fluids, enzymes, pressurized liquids, electric field, etc. These innovative extraction techniques, afford final extracts selectively rich in compounds of interest without formation of artifacts, and are often simple, fast, environmentally friendly and fully automated compared to existing extraction method. The present review is focused on the recent trends on the extraction of different bioactive chemical constituents depending on the nature of sample matrices and their chemical classes including anthocyanins, flavonoids, polyphenols, alkaloids, oils, etc. In addition, we review the strategies for designing extraction, selection of most suitable extraction methods, and trends of extraction methods for botanicals. Recent progress on the research based on these advanced methods of extractions and their industrial importance are also discussed in detail

    Carbon emissions and decarbonisation: the role and relevance of fermentation industry in chemical sector

    Get PDF
    Fermentation industry is emerging as sustainable technological alternative to cater the production of various chemical building blocks which are commercially manufactured by petrochemical route. The primary reason for this major transition is global commitment towards decarbonisation of chemical sector, as their conventional fossil-based routes pose serious environmental threat. For instance, in 2022, the direct carbon dioxide (CO2) emission during synthesis of primary chemicals accounted for ∼ 920 Mt. CO2 is one of the prominent greenhouse gases (GHG’s), contributing majorly towards global warming effect and drastic climate change. Fermentation industry largely thrives on exploiting fermentable and organic carbon derived from edible and/or non-edible biomass and transforming them to valorised products using microbial cell factories. Therefore, the production of bio-based chemicals via this route is often associated with low or zero-carbon footprint, resulting in either carbon neutral or carbon negative products. This review focuses on different types of fermentative processes and their impact on carbon release and decarbonisation. It further discusses the relevance and contribution of fermentation industry as well as biological processes to provide a sustainable solution towards decarbonisation of chemical sector. Further, it showcases the advantages of some commercial proven and/or pipeline bio-based products over their conventional competitor fossil-based products, especially from an environmental viewpoint. Finally, advantages of biogenic CO2 from fermentation industry over other sources and CO2 removal from fermentation as a platform for carbon offsetting are covered

    The role of bi-polar plate design and the start-up protocol in the spatiotemporal dynamics during solid oxide fuel cell anode reduction

    Get PDF
    Start-up conditions largely dictate the performance longevity for solid oxide fuel cells (SOFCs). The SOFC anode is typically deposited as NiO-ceramic that is reduced to Ni-ceramic during start-up. Effective reduction is imperative to ensuring that the anode is electrochemically active and able to produce electronic and ionic current; the bi-polar plates (BPP) next to the anode allow the transport of current and gases, via land and channels, respectively. This study investigates a commercial SOFC stack that failed following a typical start-up procedure. The BPP design was found to substantially affect the spatiotemporal dynamics of the anode reduction; Raman spectroscopy detected electrochemically inactive NiO on the anode surface below the BPP land-contacts; X-ray computed tomography (CT) and scanning electron microscopy (SEM) identified associated contrasts in the electrode porosity, confirming the extension of heterogeneous features beyond the anode surface, towards the electrolyte-anode interface. Failure studies such as this are important for improving statistical confidence in commercial SOFCs and ultimately their competitiveness within the mass-market. Moreover, the spatiotemporal information presented here may aid in the development of novel BPP design and improved reduction protocol methods that minimize cell and stack strain, and thus maximize cell longevit

    Ethnopharmacological Approaches for Therapy of Jaundice: Part I

    Get PDF
    Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: “jaundice,” “hyperbilirubinemia,” “serum glutamate,” “bilirubin,” “Ayurveda.” The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed

    Anti-Oxidative Polyphenolic Compounds of Cocoa

    No full text
    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa

    Anti-Oxidative Polyphenolic Compounds of Cocoa

    No full text
    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa
    corecore