64 research outputs found
Aggregated understanding of characteristics of wheat straw node and internode with their interfacial bonding mechanisms
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London.The demand for the efficient utilisation of straw biomass requires detailed analyses of its fundamental chemical structures, morphological complexity, individual cell wall components and the correlation of physicochemical to mechanical properties. The study involved two main areas: understanding the details of microstructure and characterisation/differentiation of properties of various profiled wheat straw. Comprehensive and systematic experimental programmes were therefore designed in order to thoroughly investigate the node and internode of wheat straw with quantitative appraisals and qualitative interpretations. This could contribute towards its valorisation in bio-refinery pathways. The sophisticated morphology of node and internode, inner and outer surface was investigated. It was found that the morphology across node area has a great variety when the longitudinal profile is investigated in the upwards direction to grain head. A 3D image of nodes illustrated the dense core with elliptical shaped rings organised in order to provide the echanical strength to the overall stem. The variation of cell wall composition across wheat straw node and internode showed that node yielded slightly higher Klason lignin, extractives and ash content than internode, which could be related to their morphology, precisely the higher ash and extractives content in the node are explained by thicker epidermis tissue. The physicochemical and mechanical properties of node and internode were differentiated and the effects of a combination of mild physical pre-treatment were monitored. The results indicated: i) the reduction of waxes from the outer surface, ii) significantly lower (P < 0.05) extractives and iii) the dissolution of silicon (Si weight %) on the outer surface of node and internode. The tensile strength of nodes and internodes after pre-treatments also resulted in a significant increase (P < 0.05). The accumulated characteristic data enabled the investigation of interfacial properties and bonding mechanisms of the inner and outer surface of wheat straw with thermosetting resins. Different surface functionalities and anatomical sections, altered the bonding performance, i.e. waxes and silica concentrated on the outer surface inhibited the quality of the interface. Nevertheless, the treatment improved interface (P < 0.05) between resins and the micro-porous surface of wheat straw by causing the microcellular structure of straw to expand and hence inspire the mechanical entanglement on a micro level upon resin solidification.Engineering and Physical Sciences Research (EPSRC
Enhanced Compatibility of Secondary Waste Carbon Fibers through Surface Activation via Nanoceramic Coating in Fiber-Reinforced Cement Mortars
The utilization of waste fibers in the production of reinforced concrete materials offers several advantages, including reducing environmental strain and socio-economic impacts associated with composite waste, as well as enhancing material performance. This study focuses on the development of cementitious mortars using secondary waste carbon fibers, which are by-products derived from the industrial conversion of recycled fibers into woven/non-woven fabrics. The research primarily addresses the challenge of achieving adequate dispersion of these recycled fibers within the matrix due to their agglomerate-like structure. To address this issue, a deagglomeration treatment employing nanoclay conditioning was developed. The functionalization with nanoclay aimed to promote a more uniform distribution of the reinforcement and enhance compatibility with the cementitious matrix. Various fiber weight percentages (ranging from 0.5 w/w% to 1 w/w% relative to the cement binder) were incorporated into the fiber-reinforced mix designs, both with and without nanoceramic treatment. The influence of the reinforcing fibers and the compatibility effects of nanoclay were investigated through a comprehensive experimental analysis that included mechanical characterization and microstructural investigation. The effectiveness of the nanoceramic conditioning was confirmed by a significant increase in flexural strength performance for the sample incorporating 0.75 w/w% of waste fibers, surpassing 76% compared to the control material and exceeding 100% compared to the fiber reinforced mortar incorporating unconditioned carbon fibers. Furthermore, the addition of nanoclay-conditioned carbon fibers positively impacted compression strength performance (+13% as the maximum strength increment for the mortar with 0.75 w/w% of secondary waste carbon fibers) and microstructural characteristics of the samples. However, further investigation is required to address challenges related to the engineering properties of these cementitious composites, particularly with respect to impact resistance and durability properties
Advanced Freeze-Thaw Assessment of Internally Integrated Concrete with Sodium Acetate
A new line of research is presented in this study where sodium acetate is used as a
protective material for concrete. A newly developed freeze-thaw method that depends
on the alteration of temperature and humidity is introduced in this research to investigate
the efficacy of integrating sodium acetate with concrete with different water to cement
ratios (w/c). Results from the introduced freeze-thaw method were compared with the
outcomes of a standard freeze-thaw testing method. The distressed concrete was tested
for water absorption and compressive strength after finishing six months of freeze-thaw
testing. Results demonstrated the effectiveness of sodium acetate in protecting concret
Overcoming Barriers to Implementing Building Information Modelling in Kuwait’s Ministry of Public Works:A Framework for Sustainable Construction
Construction projects in Kuwait’s Ministry of Public Works (MPW) involve numerous resources and stakeholders, necessitating effective communication and data sharing to avoid errors, conflicts, and resource wastage. Integrating Building Information Modelling (BIM) into the traditional procurement management approach has the potential to revolutionise the construction industry, enabling remote access to information and waste prevention, particularly for megaprojects. Despite its benefits, BIM adoption has been slow in MPW projects. This study investigates the reasons behind this reluctance and proposes a framework to integrate BIM into MPW projects. A qualitative research method of narrative analysis on semi-structured open interviews with key stakeholders in MPW was conducted to identify the benefits and barriers of BIM implementation. The study found that while tangible barriers were absent, challenges included a lack of senior management support, an inadequate BIM-skilled workforce, adherence to traditional processes, and limited awareness of BIM’s importance in circularity and sustainability. Nevertheless, a pilot project demonstrated improvements in collaboration, visualisation, budget estimation, and information sharing through BIM. This study proposes a framework for incorporating BIM into the MPW tendering process to address these issues, validated through interviews with tender managers. This framework aligns with Kuwait’s Vision 2035 for sustainable buildings and the Sustainable Development Goals (SDGs) of the United Nations by encouraging the implementation of BIM. Since BIM has the potential to be an effective instrument in reaching these global goals, Kuwait’s construction industry should embrace and deploy BIM.</p
Processes and materials used for direct writing technologies:A review
Direct Writing (DW), also known as Robocasting, is an extrusion-based layer-by-layer manufacturing technique suitable for manufacturing complex geometries. Different types of materials such as metals, composites, ceramics, biomaterials, and shape memory alloys can be used for DW. The simplicity and cost-efficiency of DW makes it convenient for different applications, from biomedical to optics. Recent studies on DW show a tendency towards the development of new materials and applications. This represents the necessity of a deep understanding of the principles and parameters of each technique, material, and process challenge. This review highlights the principles of many DW techniques, the recent advancements in material development, applications, process parameters, and challenges in each DW process. Since the quality of the printed parts by DW highly depend on the material extrusion, the focus of this review is mainly on the ceramic extrusion process and its challenges from rheological and material development point of view. This review delivers an insight into DW processes and the challenges to overcome for development of new materials and applications. The main objective of the review is to deliver necessary information for non-specialist and interdisciplinary researchers
Influence of Nanoceramic-Plated Waste Carbon Fibers on Alkali-Activated Mortar Performance
Waste carbon fibers as reinforcing elements in construction materials have recently gained increasing interest from researchers, providing outstanding strength performance and a lower environmental footprint compared to virgin fibers. Combination with cement-free binders, namely alkali-activated materials, is becoming increasingly important for sustainable development in the construction industry. This paper presents results relating to the potential use of waste carbon fibers in alkali-activated mortars. The waste carbon fiber fraction utilized in this research is difficult to integrate as reinforcement in ceramic–cementitious matrices due to its agglomerated form and chemical inertness. For this reason, a nanoceramic coating pretreatment based on nanoclay has been implemented to attempt improvements in terms of deagglomeration, dispersibility, and compatibility with alkali-activated materials. After chemical–physical and microstructural analysis on the nanoclay-plated fibers (including X-ray diffraction, IR spectroscopy, contact angle measurements, and electron microscopy) mortars were produced with four different dosages of treated and untreated waste fibers (0.25 wt.%, 0.5 wt.%, 0.75 wt.%, and 1 wt.%). Mechanical tests and fractographic investigations were then performed. The nanoclay coating interacts compatibly with the waste carbon fibers and increases their degree of hydrophilicity to improve their deagglomeration and dispersion. Compared to the samples incorporating as-received fillers, the addition of nanoclay-coated fibers improved the strength behavior of the mortars, recording a maximum increase in flexural strength of 19% for a fiber content of 0.25 wt.%. This formulation is the only one providing an improvement in mechanical behavior compared to unreinforced mortar. Indeed, as the fibrous reinforcement content increases, the effect of the nanoclay is attenuated by mitigating the improvement in mechanical performance
Influence of Nanoceramic-Plated Waste Carbon Fibers on Alkali-Activated Mortar Performance
Waste carbon fibers as reinforcing elements in construction materials have recently gained increasing interest from researchers, providing outstanding strength performance and a lower environmental footprint compared to virgin fibers. Combination with cement-free binders, namely alkali-activated materials, is becoming increasingly important for sustainable development in the construction industry. This paper presents results relating to the potential use of waste carbon fibers in alkali-activated mortars. The waste carbon fiber fraction utilized in this research is difficult to integrate as reinforcement in ceramic–cementitious matrices due to its agglomerated form and chemical inertness. For this reason, a nanoceramic coating pretreatment based on nanoclay has been implemented to attempt improvements in terms of deagglomeration, dispersibility, and compatibility with alkali-activated materials. After chemical–physical and microstructural analysis on the nanoclay-plated fibers (including X-ray diffraction, IR spectroscopy, contact angle measurements, and electron microscopy) mortars were produced with four different dosages of treated and untreated waste fibers (0.25 wt.%, 0.5 wt.%, 0.75 wt.%, and 1 wt.%). Mechanical tests and fractographic investigations were then performed. The nanoclay coating interacts compatibly with the waste carbon fibers and increases their degree of hydrophilicity to improve their deagglomeration and dispersion. Compared to the samples incorporating as-received fillers, the addition of nanoclay-coated fibers improved the strength behavior of the mortars, recording a maximum increase in flexural strength of 19% for a fiber content of 0.25 wt.%. This formulation is the only one providing an improvement in mechanical behavior compared to unreinforced mortar. Indeed, as the fibrous reinforcement content increases, the effect of the nanoclay is attenuated by mitigating the improvement in mechanical performance
- …