5 research outputs found

    A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite

    No full text
    The preparation of Fe3O4 from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation of Fe3O4 helps to explain the mechanism of formation of magnetosomes in magnetotactic bacteria. The products are characterized by X-ray powder diffraction (XRD), infrared (IR) spectra, vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM)

    Mechanochemical Preparation of Cobalt Nanoparticles through a Novel Intramolecular Reaction in Cobalt(II) Complexes

    No full text
    A novel solid state reaction involving a series of cobalt(II) hydrazine-azides has been used to prepare metallic cobalt nanoparticles. The reactions of [Co(N2H4)(N3)2], [Co(N2H4)2(N3)2], and [Co(N2H4)(N3)Cl]·H2O via NaOH, KOH as reactants were carried out in the solid state. These complexes undergo an intramolecular two-electron oxidation-reduction reaction at room temperature, producing metallic cobalt nanoparticles (Co1–Co6). The aforementioned complexes contain cobalt(II) that is an oxidizing agent and also hydrazine ligand as a reducing agent. Other products produced include sodium azide and ammonia gas. The cobalt metal nanoparticles were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The synthesized cobalt nanoparticles have similar morphologies; however, their particle size distributions are different
    corecore