9 research outputs found

    Land Use and Season Influence Event-Scale Nitrate and Soluble Reactive Phosphorus Exports and Export Stoichiometry from Headwater Catchments

    Get PDF
    Catchment nutrient export, especially during high flow events, can influence ecological processes in receiving waters by altering nitrogen (N) and phosphorus (P) concentrations and relative amounts (stoichiometry). Event-scale N and P export dynamics may be significantly altered by land use/land cover (LULC) and season. Consequently, to manage water resources, it is important to understand how LULC and season interact to influence event N and P export. In situ, high-frequency spectrophotometers allowed us to continuously and concurrently monitor nitrate (NO3−) and soluble reactive P (SRP) concentrations and therefore examine event-scale NO3− and SRP export dynamics. Here we analyzed event NO3− and SRP concentration-discharge hysteresis patterns and yields for \u3e400 events to evaluate how LULC and seasonality influence event NO3− and SRP export dynamics in three low-order watersheds with different primary LULCs (agricultural, forested, and urban). Differences among event NO3− and SRP hysteresis patterns suggest these nutrients have different source areas and dominant transport pathways that were impacted by both LULC and seasonality. Unexpectedly, we observed similar seasonal patterns in event NO3−:SRP stoichiometry among LULCs, with the most N-enriched events occurring in spring, and event stoichiometry approaching Redfield N:P ratios in the fall. However, seasonal stoichiometry patterns were driven by unique seasonal NO3− and SRP export patterns at each site. Overall these findings suggest LULC and seasonality interact to alter the timing and magnitude of event NO3− and SRP exports, leading to seasonal patterns in event NO3− to SRP stoichiometry that may influence ecological processes, such as productivity, in receiving waters

    How Low Can You Go?: Widespread Challenges in Measuring Low Stream Discharge and a Path Forward

    Get PDF
    Low flows pose unique challenges for accurately quantifying streamflow. Current field methods are not optimized to measure these conditions, which in turn, limits research and management. In this essay, we argue that the lack of methods for measuring low streamflow is a fundamental challenge that must be addressed to ensure sustainable water management now and into the future, particularly as climate change shifts more streams to increasingly frequent low flows. We demonstrate the pervasive challenge of measuring low flows, present a decision support tool (DST) for navigating best practices in measuring low flows, and highlight important method developmental needs

    Variation in summer nitrogen and phosphorus uptake among Siberian headwater streams

    No full text
    Arctic streams are likely to receive increased inputs of dissolved nutrients and organic matter from thawing permafrost as climate warms. Documenting how Arctic streams process inorganic nutrients is necessary to understand mechanisms that regulate watershed fluxes of permafrost-derived materials to downstream ecosystems. We report on summer nitrogen (N) and phosphorus (P) uptake in streams draining upland soils from the Pleistocene, and lowland floodplain soils from the Holocene, in Siberia’s Kolyma River watershed. Uptake of N and P differed between upland and floodplain streams, suggesting topographic variation in nutrient limitation. In floodplain streams, P uptake rate and uptake velocity were higher than N, while upland streams had similar values for all N and P uptake metrics. Phosphorus uptake velocity and size of the transient hydrologic storage zone were negatively related across all study streams, indicating strong influence of hydrologic processes on nutrient fluxes. Physical sorption of P was higher in floodplain stream sediments relative to upland stream sediments, suggesting more physically driven uptake in floodplain streams and higher biological activity in upland streams. Overall, these results demonstrate that high-latitude headwater streams actively retain N and P during summer base flows; however, floodplain and upland streams varied substantially in N and P uptake and may respond differently to inorganic nutrient and organic matter inputs. Our results highlight the need for a comprehensive assessment of N and P uptake and retention in Arctic streams in order to fully understand the impact of permafrost-derived materials on ecosystem processes, and their fate in continental drainage networks.Keywords: Arctic streams; nutrient uptake; hydrologic transient storage; phosphorus sorption; coupled N and P cycling.(Published: 6 June 2016)To access the supplementary material for this article, please see the supplementary files in the column to the right (under Article Tools).Citation: Polar Research 2016, 35, 24571, http://dx.doi.org/10.3402/polar.v35.2457

    Winter runoff events pose an unquantified continental-scale risk of high wintertime nutrient export

    No full text
    Winters in snow-covered regions have warmed, likely shifting the timing and magnitude of nutrient export, leading to unquantified changes in water quality. Intermittent, seasonal, and permanent snow covers more than half of the global land surface. Warming has reduced the cold conditions that limit winter runoff and nutrient transport, while cold season snowmelt, the amount of winter precipitation falling as rain, and rain-on-snow have increased. We used existing geospatial datasets (rain-on-snow frequency overlain on nitrogen and phosphorous inventories) to identify areas of the contiguous United States (US) where water quality could be threatened by this change. Next, to illustrate the potential export impacts of these events, we examined flow and turbidity data from a large regional rain-on-snow event in the United States’ largest river basin, the Mississippi River Basin. We show that rain-on-snow, a major flood-generating mechanism for large areas of the globe (Berghuijs et al 2019 Water Resour. Res. 55 4582–93; Berghuijs et al 2016 Geophys. Res. Lett. 43 4382–90), affects 53% of the contiguous US and puts 50% of US nitrogen and phosphorus pools (43% of the contiguous US) at risk of export to groundwater and surface water. Further, the 2019 rain-on-snow event in the Mississippi River Basin demonstrates that these events could have large, cascading impacts on winter nutrient transport. We suggest that the assumption of low wintertime discharge and nutrient transport in historically snow-covered regions no longer holds. Critically, however, we lack sufficient data to accurately measure and predict these episodic and potentially large wintertime nutrient export events at regional to continental scales

    A Classification Framework to Assess Ecological, Biogeochemical, and Hydrologic Synchrony and Asynchrony

    No full text
    Ecosystems in the Anthropocene face pressures from multiple, interacting forms of environmental change. These pressures, resulting from land use change, altered hydrologic regimes, and climate change, will likely change the synchrony of ecosystem processes as distinct components of ecosystems are impacted in different ways. However, discipline-specific definitions and ad hoc methods for identifying synchrony and asynchrony have limited broader synthesis of this concept among studies and across disciplines. Drawing on concepts from ecology, hydrology, geomorphology, and biogeochemistry, we offer a unifying definition of synchrony for ecosystem science and propose a classification framework for synchrony and asynchrony of ecosystem processes. This framework classifies the relationships among ecosystem processes according to five key aspects: 1) the focal variables or relationships representative of the ecosystem processes of interest, 2) the spatial and temporal domain of interest, 3) the structural attributes of drivers and focal processes, 4) consistency in the relationships over time, and 5) the degree of causality among focal processes. Using this classification framework, we identify and differentiate types of synchrony and asynchrony, thereby providing the basis for comparing among studies and across disciplines. We apply this classification framework to existing studies in the ecological, hydrologic, geomorphic, and biogeochemical literature, and discuss potential analytical tools that can be used to quantify synchronous and asynchronous processes. Furthermore, we seek to promote understanding of how different types of synchrony or asynchrony may shift in response to ongoing environmental change by providing a universal definition and explicit types and drivers with this framework

    Influence of land use and hydrologic variability on seasonal dissolved organic carbon and nitrate export: insights from a multi-year regional analysis for the northeastern USA

    No full text
    Land use/land cover (LULC) change has significant impacts on nutrient loading to aquatic systems and has been linked to deteriorating water quality globally. While many relationships between LULC and nutrient loading have been identified, characterization of the interaction between LULC, climate (specifically variable hydrologic forcing) and solute export across seasonal and interannual time scales is needed to understand the processes that determine nutrient loading and responses to change. Recent advances in high-frequency water quality sensors provide opportunities to assess these interannual relationships with sufficiently high temporal resolution to capture the unpredictable, short-term storm events that likely drive important export mechanisms for dissolved organic carbon (DOC) and nitrate (NO3−–N). We deployed a network of in situ sensors in forested, agricultural, and urban watersheds across the northeastern United States. Using 2 years of high-frequency sensor data, we provide a regional assessment of how LULC and hydrologic variability affected the timing and magnitude of dissolved organic carbon and nitrate export, and the status of watershed fluxes as either supply or transport controlled. Analysis of annual export dynamics revealed systematic differences in the timing and magnitude of DOC and NO3−–N delivery among different LULC classes, with distinct regional similarities in the timing of DOC and NO3−–N fluxes from forested and urban watersheds. Conversely, export dynamics at agricultural sites appeared to be highly site-specific, likely driven by local agricultural practices and regulations. Furthermore, the magnitude of solute fluxes across watersheds responded strongly to interannual variability in rainfall, suggesting a high degree of hydrologic control over nutrient loading across the region. Thus, there is strong potential for climate-driven changes in regional hydrologic cycles to drive variation in the magnitude of downstream nutrient fluxes, particularly in watersheds where solute supply and/or transport has been modified
    corecore