66 research outputs found

    Operational indistinguishably of varying speed of light theories

    Full text link
    The varying speed of light theories have been recently proposed to solve the standard model problems and anomalies in the ultra high energy cosmic rays. These theories try to formulate a new relativity with no assumptions about the constancy of the light speed. In this regard, we study two theories and want to show that these theories are not the new theories of relativity, but only re-descriptions of Einstein's special relativity.Comment: 5 pages, 2 figures, title changed, minor changes in notations and formulae, a paragraph added, Int. J. Mod. Phys. D (in press) v

    A Note on the correspondence between Qubit Quantum Operations and Special Relativity

    Full text link
    We exploit a well-known isomorphism between complex hermitian 2Ă—22\times 2 matrices and R4\mathbb{R}^4, which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E1,3\mathbb{E}^{1,3}, whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences.Comment: 6 pages, revtex, v3: revised discussio

    Nothing but Relativity, Redux

    Full text link
    Here we show how spacetime transformations consistent with the principle of relativity can be derived without an explicit assumption of the constancy of the speed of light, without gedanken experiments involving light rays, and without an assumption of differentiability, or even continuity, for the spacetime mapping. Hence, these historic results could have been derived centuries ago, even before the advent of calculus. This raises an interesting question: Could Galileo have derived Einsteinian relativity

    Relative entropy, Haar measures and relativistic canonical velocity distributions

    Get PDF
    The thermodynamic maximum principle for the Boltzmann-Gibbs-Shannon (BGS) entropy is reconsidered by combining elements from group and measure theory. Our analysis starts by noting that the BGS entropy is a special case of relative entropy. The latter characterizes probability distributions with respect to a pre-specified reference measure. To identify the canonical BGS entropy with a relative entropy is appealing for two reasons: (i) the maximum entropy principle assumes a coordinate invariant form; (ii) thermodynamic equilibrium distributions, which are obtained as solutions of the maximum entropy problem, may be characterized in terms of the transformation properties of the underlying reference measure (e.g., invariance under group transformations). As examples, we analyze two frequently considered candidates for the one-particle equilibrium velocity distribution of an ideal gas of relativistic particles. It becomes evident that the standard J\"uttner distribution is related to the (additive) translation group on momentum space. Alternatively, imposing Lorentz invariance of the reference measure leads to a so-called modified J\"uttner function, which differs from the standard J\"uttner distribution by a prefactor, proportional to the inverse particle energy.Comment: 15 pages: extended version, references adde

    Uniqueness of the mass in the radiating regime

    Get PDF
    The usual approaches to the definition of energy give an ambiguous result for the energy of fields in the radiating regime. We show that for a massless scalar field in Minkowski space-time the definition may be rendered unambiguous by adding the requirement that the energy cannot increase in retarded time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth ``piece'' of conformal null infinity Scri.Comment: 8 pages, revte

    Relativistic entanglement of two particles driven by continuous product momenta

    Get PDF
    In this paper we explore the entanglement of two relativistic spin-1/2 particles with continuous momenta. The spin state is described by the Bell state and the momenta are given by Gaussian distributions of product form. Transformations of the spins are systematically investigated in different boost scenarios by calculating the orbits and concurrence of the spin degree of freedom. By visualizing the behavior of the spin state we get further insight into how and why the entanglement changes in different boost situations

    A Lorentz-Poincar\'e type interpretation of the Weak Equivalence Principle

    Full text link
    The validity of the Weak Equivalence Principle relative to a local inertial frame is detailed in a scalar-vector gravitation model with Lorentz-Poincar\'e type interpretation. Given the previously established first Post-Newtonian concordance of dynamics with General Relativity, the principle is to this order compatible with GRT. The gravitationally modified Lorentz transformations, on which the observations in physical coordinates depend, are shown to provide a physical interpretation of \emph{parallel transport}. A development of ``geodesic'' deviation in terms of the present model is given as well.Comment: v1: 9 pages, 2 figures, v2: version to appear in International Journal of Theoretical Physic

    Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group

    Full text link
    This work is devoted to the relativistic generalization of Chasles' theorem, namely to the proof that every proper orthochronous isometry of Minkowski spacetime, which sends some point to its chronological future, is generated through the frame displacement of an observer which moves with constant acceleration and constant angular velocity. The acceleration and angular velocity can be chosen either aligned or perpendicular, and in the latter case the angular velocity can be chosen equal or smaller than than the acceleration. We start reviewing the classical Euler's and Chasles' theorems both in the Lie algebra and group versions. We recall the relativistic generalization of Euler's theorem and observe that every (infinitesimal) transformation can be recovered from information of algebraic and geometric type, the former being identified with the conjugacy class and the latter with some additional geometric ingredients (the screw axis in the usual non-relativistic version). Then the proper orthochronous inhomogeneous Lorentz Lie group is studied in detail. We prove its exponentiality and identify a causal semigroup and the corresponding Lie cone. Through the identification of new Ad-invariants we classify the conjugacy classes, and show that those which admit a causal representative have special physical significance. These results imply a classification of the inequivalent Killing vector fields of Minkowski spacetime which we express through simple representatives. Finally, we arrive at the mentioned generalization of Chasles' theorem.Comment: Latex2e, 49 pages. v2: few typos correcte

    Semiclassical approximation to supersymmetric quantum gravity

    Full text link
    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrodinger equation, and quantum gravitational correction terms to this Schrodinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many fingered) local time parameter has to be present on SuperRiemÎŁSuperRiem \Sigma (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early universe. The physical meaning of these equations and results, in particular the similarities to and differences from the pure bosonic case, are discussed.Comment: 34 pages, clarifications added, typos correcte

    Third post-Newtonian constrained canonical dynamics for binary point masses in harmonic coordinates

    Full text link
    The conservative dynamics of two point masses given in harmonic coordinates up to the third post-Newtonian (3pN) order is treated within the framework of constrained canonical dynamics. A representation of the approximate Poincar\'e algebra is constructed with the aid of Dirac brackets. Uniqueness of the generators of the Poincar\'e group resp. the integrals of motion is achieved by imposing their action on the point mass coordinates to be identical with that of the usual infinitesimal Poincar\'e transformations. The second post-Coulombian approximation to the dynamics of two point charges as predicted by Feynman-Wheeler electrodynamics in Lorentz gauge is treated similarly.Comment: 42 pages, submitted to Phys. Rev.
    • …
    corecore