1,493 research outputs found

    Models for Evaluation of Public Participation Programmes

    Get PDF

    The Fulling-Unruh effect in general stationary accelerated frames

    Full text link
    We study the generalized Unruh effect for accelerated reference frames that include rotation in addition to acceleration. We focus particularly on the case where the motion is planar, with presence of a static limit in addition to the event horizon. Possible definitions of an accelerated vacuum state are examined and the interpretation of the Minkowski vacuum state as a thermodynamic state is discussed. Such athermodynamic state is shown to depend on two parameters, the acceleration temperature and a drift velocity, which are determined by the acceleration and angular velocity of the accelerated frame. We relate the properties of Minkowski vacuum in the accelerated frame to the excitation spectrum of a detector that is stationary in this frame. The detector can be excited both by absorbing positive energy quanta in the "hot" vacuum state and by emitting negative energy quanta into the "ergosphere" between the horizon and the static limit. The effects are related to similar effects in the gravitational field of a rotating black hole.Comment: Latex, 39 pages, 5 figure

    Analytic Evaluation of the Decay Rate for Accelerated Proton

    Get PDF
    We evaluate the decay rate of the uniformly accelerated proton. We obtain an analytic expression for inverse beta decay process caused by the acceleration. We evaluate the decay rate both from the inertial frame and from the accelerated frame where we should consider thermal radiation by Unruh effect. We explicitly check that the decay rates obtained in both frame coincide with each other.Comment: 11 page

    Quantifying Self-Organization with Optimal Predictors

    Full text link
    Despite broad interest in self-organizing systems, there are few quantitative, experimentally-applicable criteria for self-organization. The existing criteria all give counter-intuitive results for important cases. In this Letter, we propose a new criterion, namely an internally-generated increase in the statistical complexity, the amount of information required for optimal prediction of the system's dynamics. We precisely define this complexity for spatially-extended dynamical systems, using the probabilistic ideas of mutual information and minimal sufficient statistics. This leads to a general method for predicting such systems, and a simple algorithm for estimating statistical complexity. The results of applying this algorithm to a class of models of excitable media (cyclic cellular automata) strongly support our proposal.Comment: Four pages, two color figure

    The Quest for Understanding in Relativistic Quantum Physics

    Full text link
    We discuss the status and some perspectives of relativistic quantum physics.Comment: Invited contribution to the Special Issue 2000 of the Journal of Mathematical Physics, 38 pages, typos corrected and references added, as to appear in JM

    The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing

    Get PDF
    The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme was crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4232, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31 ) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved

    Diamonds's Temperature: Unruh effect for bounded trajectories and thermal time hypothesis

    Full text link
    We study the Unruh effect for an observer with a finite lifetime, using the thermal time hypothesis. The thermal time hypothesis maintains that: (i) time is the physical quantity determined by the flow defined by a state over an observable algebra, and (ii) when this flow is proportional to a geometric flow in spacetime, temperature is the ratio between flow parameter and proper time. An eternal accelerated Unruh observer has access to the local algebra associated to a Rindler wedge. The flow defined by the Minkowski vacuum of a field theory over this algebra is proportional to a flow in spacetime and the associated temperature is the Unruh temperature. An observer with a finite lifetime has access to the local observable algebra associated to a finite spacetime region called a "diamond". The flow defined by the Minkowski vacuum of a (four dimensional, conformally invariant) quantum field theory over this algebra is also proportional to a flow in spacetime. The associated temperature generalizes the Unruh temperature to finite lifetime observers. Furthermore, this temperature does not vanish even in the limit in which the acceleration is zero. The temperature associated to an inertial observer with lifetime T, which we denote as "diamond's temperature", is 2hbar/(pi k_b T).This temperature is related to the fact that a finite lifetime observer does not have access to all the degrees of freedom of the quantum field theory.Comment: One reference correcte

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given

    The effect of acute exercise on objectively measured sleep and cognition in older adults

    Get PDF
    Background: Exercise can improve cognition in aging, however it is unclear how exercise influences cognition, and sleep may partially explain this association. The current study aimed to investigate whether objectively measured sleep mediates the effect of an acute exercise intervention on cognition in older adults. Methods: Participants were 30 cognitively unimpaired, physically active older adults (69.2 ± 4.3 years) with poor sleep (determined via self-report). After a triple baseline cognitive assessment to account for any natural fluctuation in cognitive performance, participants completed either a single bout of 20-minutes of high intensity exercise on a cycle ergometer, or a control condition, in a cross-over trial design. Cognition was measured immediately post-intervention and the following day, and sleep (total sleep time, sleep onset latency, sleep efficiency, % of rapid eye movement sleep, light sleep and deep sleep) was characterized using WatchPAT™ at baseline (5 nights) and measured for one night after both exercise and control conditions. Results: Results showed no effect of the exercise intervention on cognition immediately post-intervention, nor an effect of acute exercise on any sleep variable. There was no mediating effect of sleep on associations between exercise and cognition. However, a change from baseline to post-intervention in light sleep and deep sleep did predict change in episodic memory at the ~24 h post-intervention cognitive assessment, regardless of intervention condition. Discussion: There was no effect of acute high intensity exercise on sleep or cognition in the current study. However, results suggest that associations between sleep and cognition may exist independently of exercise in our sample. Further research is required, and such studies may aid in informing the most effective lifestyle interventions for cognitive health
    • …
    corecore