5 research outputs found

    Effect of Age on Flow-Rate, Protein and Electrolyte Composition of Stimulated Whole Saliva in Healthy, Non-Smoking Women

    Get PDF
    As relatively little is known about the effect of age on salivary electrolytes we studied the composition of saliva as function of age to provide reference values for healthy non-smoking women. All non-medicated and non-smoking 30-59-year-old subjects (n=255) selected from among 1030 women participating in a screening program formed the material of the present study. Salivary calcium, inorganic phosphate, magnesium, sodium, potassium, protein and flow-rate of stimulated whole saliva were measured. We found age-related changes in salivary calcium and phosphate concentrations (p=0.001 and p=0.004, respectively, one-way ANOVA). Peak values occurred at around 50-54 years of age. Age had no effect on flow-rate, magnesium, sodium, potassium or proteins. The concentration of sodium correlated positively, while phosphate, potassium, magnesium and protein correlated negatively with the salivary flow-rate. Calcium was the only electrolyte which had no association with flow-rate. Our study provides reference values for salivary electrolytes of 30-59-year-old women

    Analysis in gingival crevicular fluid of two oligopeptides derived from human hemoglobin 螔-chain

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66059/1/j.1600-0765.1996.tb00462.x.pd

    Exopolysaccharides regulate calcium flow in cariogenic biofilms

    Get PDF
    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries
    corecore