24 research outputs found

    Lack of nAChR Activity Depresses Cochlear Maturation and Up-Regulates GABA System Components: Temporal Profiling of Gene Expression in α9 Null Mice

    Get PDF
    It has previously been shown that deletion of chrna9, the gene encoding the alpha9 nicotinic acetylcholine receptor (nAChR) subunit, results in abnormal synaptic terminal structure. Additionally, all nAChR-mediated cochlear activity is lost, as characterized by a failure of the descending efferent system to suppress cochlear responses to sound. In an effort to characterize the molecular mechanisms underlying the structural and functional consequences following loss of alpha9 subunit expression, we performed whole-transcriptome gene expression analyses on cochleae of wild type and alpha9 knockout (alpha9(-/-)) mice during postnatal days spanning critical periods of synapse formation and maturation.Data revealed that loss of alpha9 receptor subunit expression leads to an up-regulation of genes involved in synaptic transmission and ion channel activity. Unexpectedly, loss of alpha9 receptor subunit expression also resulted in an increased expression of genes encoding GABA receptor subunits and the GABA synthetic enzyme, glutamic acid decarboxylase. These data suggest the existence of a previously unrecognized association between the nicotinic cholinergic and GABAergic systems in the cochlea. Computational analyses have highlighted differential expression of several gene sets upon loss of nicotinic cholinergic activity in the cochlea. Time-series analysis of whole transcriptome patterns, represented as self-organizing maps, revealed a disparate pattern of gene expression between alpha9(-/-) and wild type cochleae at the onset of hearing (P13), with knockout samples resembling immature postnatal ages.We have taken a systems biology approach to provide insight into molecular programs influenced by the loss of nicotinic receptor-based cholinergic activity in the cochlea and to identify candidate genes that may be involved in nicotinic cholinergic synapse formation, stabilization or function within the inner ear. Additionally, our data indicate a change in the GABAergic system upon loss of alpha9 nicotinic receptor subunit within the cochlea

    Transcriptional diversity of long-term glioblastoma survivors

    Get PDF
    BACKGROUND: Glioblastoma (GBM) is a highly aggressive type of glioma with poor prognosis. However, a small number of patients live much longer than the median survival. A better understanding of these long-term survivors (LTSs) may provide important insight into the biology of GBM. METHODS: We identified 7 patients with GBM, treated at Memorial Sloan-Kettering Cancer Center (MSKCC), with survival \u3e48 months. We characterized the transcriptome of each patient and determined rates of MGMT promoter methylation and IDH1 and IDH2 mutational status. We identified LTSs in 2 independent cohorts (The Cancer Genome Atlas [TCGA] and NCI Repository for Molecular Brain Neoplasia Data [REMBRANDT]) and analyzed the transcriptomal characteristics of these LTSs. RESULTS: The median overall survival of our cohort was 62.5 months. LTSs were distributed between the proneural (n = 2), neural (n = 2), classical (n = 2), and mesenchymal (n = 1) subtypes. Similarly, LTS in the TCGA and REMBRANDT cohorts demonstrated diverse transcriptomal subclassification identities. The majority of the MSKCC LTSs (71%) were found to have methylation of the MGMT promoter. None of the patients had an IDH1 or IDH2 mutation, and IDH mutation occurred in a minority of the TCGA LTSs as well. A set of 60 genes was found to be differentially expressed in the MSKCC and TCGA LTSs. CONCLUSIONS: While IDH mutant proneural tumors impart a better prognosis in the short-term, survival beyond 4 years does not require IDH mutation and is not dictated by a single transcriptional subclass. In contrast, MGMT methylation continues to have strong prognostic value for survival beyond 4 years. These findings have substantial impact for understanding GBM biology and progression

    Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence

    Get PDF
    Mutations in IDH1 and IDH2 (encoding isocitrate dehydrogenase 1 and 2) drive the development of gliomas and other human malignancies. Mutant IDH1 induces epigenetic changes that promote tumorigenesis, but the scale and reversibility of these changes are unknown. Here, using human astrocyte and glioma tumorsphere systems, we generate a large-scale atlas of mutant-IDH1-induced epigenomic reprogramming. We characterize the reversibility of the alterations in DNA methylation, the histone landscape, and transcriptional reprogramming that occur following IDH1 mutation. We discover genome-wide coordinate changes in the localization and intensity of multiple histone marks and chromatin states. Mutant IDH1 establishes a CD24+ population with a proliferative advantage and stem-like transcriptional features. Strikingly, prolonged exposure to mutant IDH1 results in irreversible genomic and epigenetic alterations. Together, these observations provide unprecedented high-resolution molecular portraits of mutant-IDH1-dependent epigenomic reprogramming. These findings have substantial implications for understanding of mutant IDH function and for optimizing therapeutic approaches to targeting IDH-mutant tumors

    From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas

    No full text
    In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ

    Epigenetic Drugs and Their Immune Modulating Potential in Cancers

    No full text
    Epigenetic drugs are used for the clinical treatment of hematologic malignancies; however, their therapeutic potential in solid tumors is still under investigation. Current evidence suggests that epigenetic drugs may lead to antitumor immunity by increasing antigen presentation and may enhance the therapeutic effect of immune checkpoint inhibitors. Here, we highlight their impact on the tumor epigenome and discuss the recent evidence that epigenetic agents may optimize the immune microenvironment and promote antiviral response

    Important Requirements for Desorption/Ionization Mass Spectrometric Measurements of Temozolomide-Induced 2′-Deoxyguanosine Methylations in DNA

    No full text
    In clinical pharmacology, drug quantification is mainly performed from the circulation for pharmacokinetic purposes. Finely monitoring the chemical effect of drugs at their chemical sites of action for pharmacodynamics would have a major impact in several contexts of personalized medicine. Monitoring appropriate drug exposure is particularly challenging for alkylating drugs such as temozolomide (TMZ) because there is no flow equilibrium that would allow reliable conclusions to be drawn about the alkylation of the target site from plasma concentrations. During the treatment of glioblastoma, it appears, therefore, promising to directly monitor the alkylating effect of TMZ rather than plasma exposure, ideally at the site of action. Mass spectrometry (MS) is a method of choice for the quantification of methylated guanines and, more specifically, of O6-methylguanines as a marker of TMZ exposure at the site of action. Depending on the chosen strategy to analyze modified purines and 2′-deoxynucleosides, the analysis of methylated guanines and 2′-deoxyguanosines is prone to important artefacts due to the overlap between masses of (i) guanines from DNA and RNA, and (ii) different methylated species of guanines. Therefore, the specific analysis of O6-methyl-2′deoxyguanosine, which is the product of the TMZ effect, is highly challenging. In this work, we report observations from matrix-assisted laser desorption/ionization (MALDI), and desorption electrospray ionization (DESI) MS analyses. These allow for the construction of a decision tree to initiate studies using desorption/ionization MS for the analysis of 2′-deoxyguanosine methylations induced by TMZ

    Important Requirements for Desorption/Ionization Mass Spectrometric Measurements of Temozolomide-Induced 2′-Deoxyguanosine Methylations in DNA

    No full text
    In clinical pharmacology, drug quantification is mainly performed from the circulation for pharmacokinetic purposes. Finely monitoring the chemical effect of drugs at their chemical sites of action for pharmacodynamics would have a major impact in several contexts of personalized medicine. Monitoring appropriate drug exposure is particularly challenging for alkylating drugs such as temozolomide (TMZ) because there is no flow equilibrium that would allow reliable conclusions to be drawn about the alkylation of the target site from plasma concentrations. During the treatment of glioblastoma, it appears, therefore, promising to directly monitor the alkylating effect of TMZ rather than plasma exposure, ideally at the site of action. Mass spectrometry (MS) is a method of choice for the quantification of methylated guanines and, more specifically, of O6-methylguanines as a marker of TMZ exposure at the site of action. Depending on the chosen strategy to analyze modified purines and 2′-deoxynucleosides, the analysis of methylated guanines and 2′-deoxyguanosines is prone to important artefacts due to the overlap between masses of (i) guanines from DNA and RNA, and (ii) different methylated species of guanines. Therefore, the specific analysis of O6-methyl-2′deoxyguanosine, which is the product of the TMZ effect, is highly challenging. In this work, we report observations from matrix-assisted laser desorption/ionization (MALDI), and desorption electrospray ionization (DESI) MS analyses. These allow for the construction of a decision tree to initiate studies using desorption/ionization MS for the analysis of 2′-deoxyguanosine methylations induced by TMZ
    corecore