5 research outputs found

    Cross-Term free based bistatic radar system using sparse least squares

    Get PDF
    Passive Bistatic Radar (PBR) systems use illuminators of opportunity, such as FM, TV, and DAB broadcasts. The most common illuminator of opportunity used in PBR systems is the FM radio stations. Single FM channel based PBR systems do not have high range resolution and may turn out to be noisy. In order to enhance the range resolution of the PBR systems algorithms using several FM channels at the same time are proposed. In standard methods, consecutive FM channels are translated to baseband as is and fed to the matched filter to compute the range-Doppler map. Multichannel FM based PBR systems have better range resolution than single channel systems. However superious sidelobe peaks occur as a side effect. In this article, we linearly predict the surveillance signal using the modulated and delayed reference signal components. We vary the modulation frequency and the delay to cover the entire range-Doppler plane. Whenever there is a target at a specific range value and Doppler value the prediction error is minimized. The cost function of the linear prediction equation has three components. The first term is the real-part of the ordinary least squares term, the second-Term is the imaginary part of the least squares and the third component is the l2-norm of the prediction coefficients. Separate minimization of real and imaginary parts reduces the side lobes and decrease the noise level of the range-Doppler map. The third term enforces the sparse solution on the least squares problem. We experimentally observed that this approach is better than both the standard least squares and other sparse least squares approaches in terms of side lobes. Extensive simulation examples will be presented in the final form of the paper. © 2015 SPIE

    Projections Onto Convex Sets (POCS) Based Optimization by Lifting

    Get PDF
    Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is a convex set in R^(N+1). The iterative optimization approach starts with an arbitrary initial estimate in R^(N+1) and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp, p<1 can be handled by using the supporting hyperplane concept

    Range-Doppler radar target detection using compressive sensing

    No full text
    Compressive sensing (CS) idea enables the reconstruction of a sparse signal from small number of measurements. CS approach has many applications in many areas. One of the areas is radar systems. In this article, the radar ambiguity function is denoised within the CS framework. A new denoising method on the projection onto the epigraph set of the convex function is also developed for this purpose. This approach is compared to the other CS reconstruction algorithms. Experimental results are presented. © 2014 IEEE

    Separating nut-shell pieces from hazelnuts and pistachio kernels using impact vibration analysis

    No full text
    In this article nut-shell pieces are separated from pistachio kernels and hazelnut kernels using impact vibration analysis. Vibration signals are recorded and analyzed in real-time. Mel-kepstral feature parameters and line spectral frequency values are extracted from the vibration signals. Feature parameters are classified using a Support Vector Machine (SVM) which was trained a priori using a manually classified data set. An average classification rate of 96:3% and 98:3%was achieved with Antepstyle Turkish pistachio nuts and hazelnuts. An important feature of the method is that it is easily trainable for other kinds of pistachio nuts and other nuts including walnuts. © 2013 IEEE

    Approximate computation of DFT without performing any multiplications: Application to radar signal processing [DFTnin çarpma i şlemi kullanilmadan yaklaşik hesaplanmasi: Radar sinyal işleme üzerine uygulamalar]

    No full text
    In many radar problems it is not necessary to compute the ambiguity function in a perfect manner. In this article a new multiplication free algorithm for approximate computation of the ambiguity function is introduced. All multiplications (a × b) in the ambiguity function are replaced by an operator which computes sign(a × b)(a + b). The new transform is especially useful when the signal processing algorithm requires correlations. Ambiguity function in radar signal processing requires high number of correlations and DFT computations. This new additive operator enables an approximate computation of the ambiguity function without requiring any multiplications. Simulation examples involving passive radars are presented. © 2014 IEEE
    corecore