1,819 research outputs found
The exchange fluctuation theorem in quantum mechanics
We study the heat transfer between two finite quantum systems initially at
different temperatures. We find that a recently proposed fluctuation theorem
for heat exchange, namely the exchange fluctuation theorem [C. Jarzynski and D.
K. Wojcik, Phys. Rev. Lett. 92, 230602 (2004)], does not generally hold in the
presence of a finite heat transfer as in the original form proved for weak
coupling. As the coupling is weakened, the deviation from the theorem and the
heat transfer vanish in the same order of the coupling. We then discover a
condition for the exchange fluctuation theorem to hold in the presence of a
finite heat transfer, namely the commutable-coupling condition.
We explicitly calculate the deviation from the exchange fluctuation theorem
as well as the heat transfer for simple models. We confirm for the models that
the deviation indeed has a finite value as far as the coupling between the two
systems is finite except for the special point of the commutable-coupling
condition. We also confirm analytically that the commutable-coupling condition
indeed lets the exchange fluctuation theorem hold exactly under a finite heat
transfer.Comment: 16 pages, 3 figures, to appear in Progress of Theoretical Physics,
Vol. 121, No. 6 (2009
Experimental study of the fluctuation theorem in a nonequilibrium steady state
The fluctuation theorem (FT) quantifies the probability of second law violations in small systems over short time scales. While this theorem has been experimentally demonstrated for systems that are perturbed from an initial equilibrium state, there are a number of studies suggesting that the theorem applies asymptotically in the long time limit to systems in a nonequilibrium steady state. The asymptotic application of the FT to such nonequilibrium steady states has been referred to in the literature as the steady-state fluctuation theorem (or SSFT). In this paper, we demonstrate experimentally the application of the FT to nonequilibrium steady states, using a colloidal particle localized in a translating optical trap. Furthermore, we show, for this colloidal system, that the FT holds under nonequilibrium steady states for all time, and not just in the long time limit, as in the SSFT
Equilibrium binding energies from fluctuation theorems and force spectroscopy simulations
Brownian dynamics simulations are used to study the detachment of a particle
from a substrate. Although the model is simple and generic, we attempt to map
its energy, length and time scales onto a specific experimental system, namely
a bead that is weakly bound to a cell and then removed by an optical tweezer.
The external driving force arises from the combined optical tweezer and
substrate potentials, and thermal fluctuations are taken into account by a
Brownian force. The Jarzynski equality and Crooks' fluctuation theorem are
applied to obtain the equilibrium free energy difference between the final and
initial states. To this end, we sample non--equilibrium work trajectories for
various tweezer pulling rates. We argue that this methodology should also be
feasible experimentally for the envisioned system. Furthermore, we outline how
the measurement of a whole free energy profile would allow the experimentalist
to retrieve the unknown substrate potential by means of a suitable
deconvolution. The influence of the pulling rate on the accuracy of the results
is investigated, and umbrella sampling is used to obtain the equilibrium
probability of particle escape for a variety of trap potentials.Comment: 21 pages, 11 figures, To appear in Soft Matte
Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter
Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane
Fluctuation Theorems
Fluctuation theorems, which have been developed over the past 15 years, have
resulted in fundamental breakthroughs in our understanding of how
irreversibility emerges from reversible dynamics, and have provided new
statistical mechanical relationships for free energy changes. They describe the
statistical fluctuations in time-averaged properties of many-particle systems
such as fluids driven to nonequilibrium states, and provide some of the very
few analytical expressions that describe nonequilibrium states. Quantitative
predictions on fluctuations in small systems that are monitored over short
periods can also be made, and therefore the fluctuation theorems allow
thermodynamic concepts to be extended to apply to finite systems. For this
reason, fluctuation theorems are anticipated to play an important role in the
design of nanotechnological devices and in understanding biological processes.
These theorems, their physical significance and results for experimental and
model systems are discussed.Comment: A review, submitted to Annual Reviews in Physical Chemistry, July
2007 Acknowledgements corrected in revisio
Conformational isomers of linear rotaxanes
We examine a simple model of rotaxane structure, with 3 asymmetric rings interacting via repulsive power-law forces. This interlocked molecule exhibits conformational isomerisation which is different from that of molecules whose connectedness is through covalent bonds. The rings are free to translate along and rotate around the axle, and hence weak interaction forces between the rings can lead to distinct rotamer states. We use energy minimisation to determine these states exactly, and show that there can be transitions from asymmetric to symmetric states by varying the bond lengths. We also use classical statistical mechanics to show the effect of thermal noise
Coarse-graining intramolecular hydrodynamic interaction in dilute solutions of flexible polymers
We present a scheme for coarse-graining hydrodynamic interactions in an isolated flexible homopolymer
molecule in solution. In contrast to the conventional bead-spring model that employs spherical beads of fixed
radii to represent the hydrodynamic characteristics of coarse-grained segments, we show that our procedure
leads naturally to a discrete model of a polymer molecule as a chain of orientable and stretchable Gaussian
blobs. This model accounts for both intrablob and interblob hydrodynamic interactions, which depend on the
instantaneous shapes of the blobs. In Brownian dynamics simulations of initially stretched chains relaxing
under quiescent conditions, the transient evolution of the mean-square end-to-end distance and first normal
stress difference obtained with the Gaussian-blob model are found to be less sensitive to the degree of coarse
graining, in comparison with the conventional bead-spring model with Rotne-Prager-Yamakawa hydrodynamic
interactions
Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction
Cardiovascular diseases remain the greatest cause of death in the US and gene therapy has the potential to be an effective therapy. In this study, we demonstrated MMP-9 based protease-activatable virus (PAV) for selective infection of myocardial infarct (MI) that is associated with active MMP-9 expression. To test the specificity of PAV, we used expression of a far-red fluorescence protein (iRFP) delivered by the PAV together with a dual PET/NIRF imaging agent specific for active MMP-9 activity at the site of MI in a murine model. Calibrated fluorescence imaging employed a highly-sensitive intensified camera, laser diode excitation sources, and filtration schemes based upon the spectra of iRFP and the NIRF agent. One to two days after ligation of the left anterior descending artery, the PAV or WT AAV9 virus encoding for iRFP (5x1010 genomic particles) and radiolabeled MMP-9 imaging agent (3 nmol) were injected intravenously (i.v.). PET imaging showed MMP activity was associated with adverse tissue remodeling at the site of the MI. One week after, animals were again injected i.v. with the MMP-9 agent (3 nmol) and 18-24 h later, the animals were euthanized and the hearts were harvested, sliced, and imaged for congruent iRFP transgene expression and NIRF signals associated with MMP-9 tissue activity. The fluorescent margins of iRFP and NIRF contrasted tissues were quantified in terms Standard International units of mW/cm2/sr. The sensitivity, specificity, and accuracy of PAV and WT targeting to sites of MI was determined from these calibrated fluorescence measurements. The PAV demonstrated significantly higher delivery performance than that of the WT AAV9 virus
Comparison of work fluctuation relations
We compare two predictions regarding the microscopic fluctuations of a system
that is driven away from equilibrium: one due to Crooks [J. Stat. Phys. 90,
1481 (1998)] which has gained recent attention in the context of nonequilibrium
work and fluctuation theorems, and an earlier, analogous result obtained by
Bochkov and Kuzovlev [Zh. Eksp. Teor. Fiz. 72(1), 238247 (1977)]. Both results
quantify irreversible behavior by comparing probabilities of observing
particular microscopic trajectories during thermodynamic processes related by
time-reversal, and both are expressed in terms of the work performed when
driving the system away from equilibrium. By deriving these two predictions
within a single, Hamiltonian framework, we clarify the precise relationship
between them, and discuss how the different definitions of work used by the two
sets of authors gives rise to different physical interpretations. We then
obtain a extended fluctuation relation that contains both the Crooks and the
Bochkov-Kuzovlev results as special cases.Comment: 14 pages with 1 figure, accepted for publication in the Journal of
Statistical Mechanic
Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales
We experimentally demonstrate the fluctuation theorem, which predicts appreciable and measurable violations of the second law of thermodynamics for small systems over short time scales, by following the trajectory of a colloidal particle captured in an optical trap that is translated relative to surrounding water molecules. From each particle trajectory, we calculate the entropy production/consumption over the duration of the trajectory and determine the fraction of second law–defying trajectories. Our results show entropy consumption can occur over colloidal length and time scales
- …
