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Experimental study of the fluctuation theorem in a nonequilibrium steady state
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The fluctuation theorertFT) quantifies the probability of second law violations in small systems over short
time scales. While this theorem has been experimentally demonstrated for systems that are perturbed from an
initial equilibrium state, there are a number of studies suggesting that the theorem applies asymptotically in the
long time limit to systems in a nonequilibrium steady state. The asymptotic application of the FT to such
nonequilibrium steady states has been referred to in the literature as the steady-state fluctuation(tieorem
SSFT). In this paper, we demonstrate experimentally the application of the FT to nonequilibrium steady states,
using a colloidal particle localized in a translating optical trap. Furthermore, we show, for this colloidal system,
that the FT holds under nonequilibrium steady statesfiotime, and not just in the long time limit, as in the

SSFT.
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. INTRODUCTION P(Q, =—A
_ _ _ PUL=-A) exp(—A). (1)
In many areas of physical chemistry, researchers strive to P(Q=A)

understand new systems through deterministic equations of
motion. They seek to quantify microscopic forces and underThe dissipation function();, is, in general, a dimensionless
stand how a system responds to external perturbations, usimiissipated energy, accumulated along the system’s trajectory;
techniques such as molecular dynamics simulation. At thexpressions fo), differ from system to system. It is an
heart of this endeavor is the notion that if the equations okxtensive property, i.e., its magnitude scales with system size
motion or trajectories of the system are known, then anyand observation time, Thus, Eq.(1) also shows that as the
question about that system may be answered. However, sugfystem size gets larger or the observation time gets longer,
deterministic equationgsuch as Newton's equationgre  antitrajectories become rare and it becomes overwhelmingly
time reversible, so that for every trajectory there exists ajkely that the system appears time irreversible, in accord
time-reversed trajectory or “anti-" trajectory which is also ayjth the second law. In addition, E¢L) also shows that the
solution to the equations. The relative probabilities of ob-ensemple average of the dissipation function is positive for
serving bundles of conjugate trajectories quantifies the e t and for any system size; i.é()=0 which is referred
versibility” of the system: if the probability of observing a :
trajector?/es and theyir respective Fémtitrajeg';ories are qual, thtg as the secor)d law inequalig). However, the a dOE’TS not
system is said to be perfectly reversible; on the other hand, r_ejscnbe the “m9 or length scales over Wh'f:.h such Irevers-
ibility evolves. This is gleaned from the specific equations of

the probability of observing antitrajectories is vanishingly ; ; h I he distributi f
small, we say that the system is irreversible. The second laf*°tion governing the system as well as the distribution o

of thermodynamics stipulates that a system evolves irreverdDitial states of the system. o ,

all antitrajectories is zero. However, the second law strictlyfor the fluctuation theorem, depending upon how the theorem
app"es to |arge systems over |ong time scales and does nlﬁ applied. The transient fluctuation theorem or TFT is sim-
describe the reversibility of small systems that are of currenply Eq. (1) applied to transient systems, i.e., systems that
scientific interest, such as protein motors and nanomachinegvolve from a known initial equilibrium state towards a final
This long-standing question of how irreversible macroscopicquilibrium or nonequilibrium steady state. The steady-state
equations, as summarized by the second law of thermodyfluctuation theorem or SSFT refers to the steady-state appli-
namics, can be derived from reversible microscopic equaeation of the theorem, where the dissipation function is
tions of motion was first noted by Loschmifdt] in 1876. evaluated over trajectory segments of durattprsampled

The fluctuation theorentFT) of Evanset al. [2,3] de-  wholly under nonequilibrium steady-state conditions. When
scribes how a system’s irreversibility develops in time from a), is evaluated for steady-state trajectories, the theorem is
completely time-reversible system at short observation timessaid to hold only in the long time limit,
to a thermodynamically irreversible one at infinitely long
times. That is, it bridges the microscopic and macroscopic . P(Qy==-A)
descriptions, relating a system’s time-reversible equations of lim P(Q,=A) = exp-A), 2

t—oo t

motion to the second law. Specifically, the FT relates the
relative probabilities of observing trajectories of duratton which is precisely the form of the SSFT given in the litera-
and their conjugate antitrajectories, each characterized by thare. As we show in this paper, the asymptotic limit in the
dissipation function{),, taking on arbitrary value& and -A, SSFT is a result odpproximationamade in the argument of
respectively: the theorem, the dissipation functiof};. When we are able
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12 when(), is derived exactly, the FT holds for all time, includ-
> 4 ing short times.
'S The remainder of the paper is organized in the following
® o8 manner. In the following section, we briefly review the defi-
g 06 / nition of the dissipation function for nonequilibrium pro-
= ' / cesses and its derivation using both deterministic and sto-
S o4 chastic dynamics. We show that closed-form expressions
2 / used in the literature for deterministically derived steady-
s 02 state dissipation functions are approximations to an exact,
0 but insoluble expression. Furthermore, we demonstrate that
0 5 Time. te 10 15 for select systems, it may be possible to construct an exact,

closed-form expression for the steady-state dissipation func-

FIG. 1. The transient and steady-state motion of a colloidal parfion Using stochastic dynamics. In Sec. Il we describe the
ticle, shown as relative particle velocity(t)/vo, versus scaled experimental system that generates steady-state trajectories

time't/, localized in a stationary optical trap that is translated with Of @ colloidal particle localized in a translating optical trap
constant velocity,y starting att=0. This average of the particle and in Sec. IV we show, using two sets of data, that the FT
velocity, measured in the direction of the trap translation, is preholds for all time under nonequilibrium steady state when-
dicted from a balance of optical force and hydrodynamic drag:ever the dissipation function is expressed exactly and not
v(t)=(1/7[r(t) —vept] wherev(t)=dr(t)/dt, 7 is the characteristic ~approximately.

timescale of relaxation, and the average initial position of the par-
ticle is at the center of the optical trapt=0)=0. A steady-state
trajectory of the particle corresponds to trajectory tine,5r,
whereu(t)/v,p N0 longer varies in time and is approximately unity.

II. DETERMINISTIC AND STOCHASTIC DISSIPATION
FUNCTIONS IN THE STEADY STATE

A. Deterministic derivation of an approximate dissipation

to express(); exactly the asymptotic limit is no longer function for steady-state trajectories

needed and the operative theorem under steady-state condi-
tions is the FT, Eq(1). Thus, while the literature and its ~ For a Newtonian, deterministic system, a system’s state is
nomenclature might indicate that there are two differentdescribed in terms of the coordinatgsnd momenta of all
theoremd5], the FT is general and applicable to both tran-constituent molecules, including solvent molecules, and is
sient and steady-state conditions. As the detailed proofs akpresented by a point in phase spdces{q,p}. For every
steady-state and transient applications of the FT are differentsajectory that is initiated af'o={q,po} and terminates at
we will use the labels SSFT and TFT to refer to these differ—]"tz{qt,pt} in a system of reversible dynamics, there is a
e.;nt. proofs, as well as to the application of the asymptotiGunique conjugate or antitrajectory that startsIé;tE{qt,
limit in Eq. (2). -pg and ends al’; ={qo, —po}. Let SV(T's={qs,ps}) repre-
_To demonstrate the use of the FT under steady-state Cogant a volume element of a bundle of trajectories at tame
ditions, we chose a system where the dissipation functiofrhen the corresponding bundle of conjugate trajectories or
can be approximated for deterministic dynamics and exgypgitrajectories has the volun®/(I's = {q,_s, ~P-¢}) at time
pressed exactly for stochastic or Langevin dynamics. Thi§ as the dynamics are deterministic, a set of trajectories
system is based upon the drag experiment used by Wang spanningI’, and I, (as well as the corresponding set of
al. [6] where a colloidal particle is weakly held in a station- 4niitrajectoriesis completely specified by the duration of the
ary optical trap that is translated uniformly with velocity  yrajectories,t, and a set of phase-space points at arbitrary
starting att=0. Initially the particle’s position in the har- ime s o<s<t, MMT).
monic well is distributed according to an equilibrium Boltz- 5 measure of reversibility), is the ratio of the probabili-

mann distribution with an average particle velocity of 0. a5 of ghserving sets of trajectories and their time reverse or
With trap translation, the particle is displaced from its equ"antitrajectories. The probabilites of the trajectory/

librium position until, at some later time, the average veloC-gpitraiectory can be described by the probabiliies of the
ity of the particle is equal to the trap velocity and the averagg,q; me elements at any arbitrary tinsealong the system’s
particle position is determined by a balance between the Op('rajectory:

tical force and hydrodynamic dragig. 1). From this point,
the system is in a nonequilibrium steady state. In their origi- P(sV(I'y)
nal experiment, Wang and colleagues evaluated the dissipa- ()= I”(m>'
tion function, constructed using deterministic dynamics from s

an equilibrium initial condition and thereby demonstrated thewhere we havd™ as an argument to the dissipation function,
FT, Eq. (1), under transient conditions. In this paper, we ("), to signal that the dissipation function is derived using
report similar drag experiments using linear and circulardeterministic dynamics. The reader may recognize(Bgas
translation of a particle-filled optical trap and evaluate thean alternative description of the FT. Equilibrium statistical
dissipation function under steady-state conditions. Consistemechanics provides probability distributions that are simple
with previous literature on the SSFT, we demonstrate experiexplicit functions of the phase spade,But it is not possible
mentally that the FT holds asymptotically in the long time to cast closed-form expressions of distributions of nonequi-
limit—but only for , derived approximately. However, librium states in phase-spafé. However, if we specify that
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all trajectories are intiated under equilibrium conditions, then U dK t dat Ut do
() 1 q (@)
the phase-space probability distributions are known initially, — dS? = [ dsKq _Vopts)E + dT,
s=0. The dissipation function is thus written for determinis- 0 0 0
tic systems as
and
P(sV(I'g))
QI = In(—? . (4) tdd, (gt t dq*
P(8V(I'o)) dS_dpS_ = | dska'-veps) - gs  Vont
0 0

Consequently, in order to formulate a closed-form expression
for the dissipation function under deterministic dynam|cs,and where o= _d(popt/dqé is the optical force acting on the

the trajectories must start from an equilibrium state. particle. It is important to emphasize again that the system is
To |Ilus'Frate Eq.(4) with a specific system,_congdé}t constrained to be at equilibrium at the lower time integration

for an Op“c"’.‘”y trapfed palrtlcle_ Whos_e coordma;e an_d MOTimit, t=0. For a strict derivation that includes thermostatting

menta are given by andps at times, in a sea of identical - hqiraints and phase-space compression factors, the reader

parucle; that are ot_herW|sg unaffected. by the trapt#0, . can follow the deterministic derivation &I,(I") provided by

the stationary trap is set in motion with constant VeIoc'tyReid et al. for a stationary trap whose strength increases at

Vopt This is the molecular analog of Wang's colloidal experi—t:0 [8]. Fbr the drag experimen€),(T') corresponds physi-

ment'.lt Here. Plgb\lf(l“i,)&~ex§q: H(Fi)ékBT)’l Wﬁﬁri the cally to the time integral over the instantaneous rate of work

a(;“&)(on')ag isH( tq)— tﬁpo) t(qO)’ k'opt(tqo) wi (p% 160) = (keT) Mo Vo required to translate the trap with
and®iqe) desighating the systems Kinetic energy an €constant velocity,,.. If the trap contained no particle, no
potential energy arising from interparticle interactions, both

: . .energy would be dissipated in translating it. In Wang’s col-
being constants of the isothermal system. The trap potentigl; | experiments, particle trajectories wigh(I') <0 were

atany times, is q’cpt(qi):%k(qif.voms)z’ wherevepsis the  gpserved in a weak, slowly translating trap up to 2—3 s after
position of the trap center, initially located at the origin. ya, translation. That is, heat fluctuations in the surroundings
Likewise, the distribution of antltrajectoneﬁiz(é\/(l“o)), IS provided useful work for up to a few seconds. For larger
determined by the Hamiltonian evaluatedIgf or equiva-  systems, this would be a violation of the second law of ther-
lently at the phase-space destination pdifitof the forward  modynamics and, consequently, Waetcal. referred to these
'[I’aje*Ctory, eVaIuated under |n|t|a|, equi”bl’ium COﬂditiOﬂSZ Observab'e trajectories as “entropy_consuming.” It iS impor-
H(Ip)=K(-p) +®(qy) + Pop(dy). Some care is needed in tant to emphasize that the strict derivation of Erp) from
evaluating®,,: in order to preserve the time-reversal map-Eq. (4) requires that the time integration start under equilib-
ping, the optical trap center is locatedwapt at the start of  rium conditions so that distributions of initial particle posi-

an anti-trajectory. Thus tions are known.
ext - H(To)/keT] _ As the dt_a;grministic_defini_tion df), requires tha_t t_h_e rela- _
Q) = In( 0778 ) (5) tive probabilities of trajectories be made under initial, equi-
exd— H(o)/kgT] librium conditions, it is not possible to construct exact ex-

pressions fok),(I") for trajectory segments of duratidrihat
1 . are wholly at a nonequilibrium steady state. However, as the
ZE[H(FO) ~H(Ty)] (6)  dissipation function is extensive, an approximate steady-state
dissipation function can be constructed in the following way.
We can casf), in terms of its instantaneous rate of change,

=i[H(Ft) -H(TY)] 7) Q(s) at times, accumulated from an initial equilibrium state
kgT at times=0 to some arbitrary time;
1 (Y [dHT ’ ‘
:—f ds(ﬁ> (8) O, :f ds()(s) +f dsQ(s). (11
kBT 0 dS 0 T
1 ' [dK(p) dd(q) Here we have introducedas an arbitrary “cutoff” time that
=—J ds(—p + 29 is sufficiently large that the system can be regarded as being
keTJo ds ds in steady state fos> 7, so that(), is cast as a sum of tran-
dD, (o) sient and steady-state contributions. The steady-state contri-
+ —°ii> (9)  bution is identified with the steady-state dissipation function,
ds Q% which we can use to approximaf® with an error of
order T
or
1t Q= QP+ O(7). (12
o)== f ds(fopt - Vopd (10)
810 Itis instructive to express these dissipation functions as time-
where we have used averages{),=(,/t, such that
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0, =~ 0%+ 0({) . (13)

PHYSICAL REVIEW E 71, 046142(2009

B. Stochastic derivation of the dissipation function
for steady-state trajectories

For some systems described using stochastic dynamics, it

This shows clearly that the error invoked by approximatingis possible to construct distributions of trajectories that are

Q with (_2fsvanishes in the long time limit as/'t. However,
the fluctuations in the measuf® along a trajectory also

wholly in a nonequilibrium steady state. The motion of a
system under stochastic dynamics is no longer described by

vanish in the longtime limit and, in order that the SSFT be ofthe set of cpordinates and momenta of aII.constituent mol-
any importance, it is necessary that these fluctuations vanigiFules, but is reduced to coordinates, say in the case of the

more slowly thanO(r/t), the error in the();° approximation.

The measureatSS along the steady-state portion of a trajec-
tory is

_ 1t
0= T fo dst)(s), (14)

Wang experiment, of the colloidal particle(t)=r;. Unlike
Newtonian dynamics, the stochastic equations of motion
cannot be used to construct conjugate pairs of trajectories
through time reversal, as the stochastic force is Markovian.
Moreover, as the particle position is not unique to any given
trajectory, there exist infinitely many trajectories that origi-
nate atry and a subset of these arrive at a given destination

at timet. Let {rq,r} represent those stochastic trajectories

which can be reexpressed as a sum of measures taken aloitigit evolve fronrytor,, and let{r,ro} represent a conjugate

contiguous trajectory segments of duratitvh

At
f ds()(s)
(i-1)At

_t i At-

t/At

— 1
=2 (15

(16)

set of “backward” trajectories evolving fromto r. Letting
P(ro,ry) and P(r.,rp) represent the normalized probability
distribution of a set of forward trajectory and respective
backward trajectories, then by analogy with E8), Reid et

al. [8] expressed the stochastically determined dissipation
function as

P(rOIrt)

P(ry,ro) (19

Q)= In(

If At is larger than the longest correlation time in the systemAS above, we incorporateas an argument to the dissipation
then the sunEQ,, is of independent measures and the Vari_fgnctlon,_()t(r), to S|gnal that t_he dissipation function is de-
ance in the sum is proportional to the number of measures dfved using stochastic dynamics.

t/At. The factor 11 in front of the sum decreases the vari-
ance of the sum by a factot. Thus, the standard deviation
of the measurleialong a steady-state portion of a trajec-
tory diminshes ast, at a rate slower than that of the error in
the approximation of), with 7 Consequently, we can ap-
proximate (), in the FT[see Eq.(1)] with the steady-state
dissipation function();*, leading to the SSFT:

PAAC=A _ A,

CLPOP=—A) (17

In this way, the SSFT is an approximation to the FT that is
accurate in the long time limit, i.e., when the transient con-
tribution to the dissipation function becomes negligible, and

well before the fluctuations i€);° vanish along steady-state

trajectories. A4),(I") cannot be easily expressed for steady-

To illustrate Eq.(19) with a specific system, consider a
stochastic description of the colloidal particle in a harmonic
potential that is translated with velocity,

dr
ga =—k(r - Voptt) +9(v), (20)

wherer is the coordinate of the colloidal particle, in a fixed

coordinate frame whose origin is the trap center=a, ¢ is
the friction coefficientk is the trapping constang(t) is un-
correlated Gaussian noise with zero mean, éyd)g(t’))
=2&kgTS(t—t'). It is convenient to transform this stochastic
equation into a different coordinate systemthat translates
according tor =x+V,,t—&v,p/ k. The equation of motion in
he translating-coordinate frame, is then

d
gd—f —kx+g(b). (21)

state trajectories, it is approximated specifically for the Wang

experiment by

t

QNI) =
‘ keTJo

dqfopt ’ Vopt) ) (18)

where the time integratiostarts under steady-state condi-
tions. QT") will satisfy the SSFT or, equivalently, will sat-

isfy the FT asymptotically in the long time limit. It is impor-
tant to note that the asymptotic limit results from our

This is the equation for a particle in a stationary parabolic

potential and it has a well-known and simple Green or propa-
gator function:

k
27kgT[1 — exg— 2t/7)]

KX — Xo exp(— t/7) ]
XeXp<_ 2kgT[1 - exp- 2t/7)]

G(X,Xo,t) =

>, (22)

inability to express distributions of states other than equilib-where 7= ¢/k is the typical time scale of the motion. This

rium.

expression is the probability distribution associated with the
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particle, initially located ak,, being located ax some time at 200 Hz and applying the equipartition theorerk:
t later. In the limit of larget, this reduces to the equilibrium =kgT/{r?). Particle trajectories, i.e. particle position versus

Boltzmann distribution time, were then constructed and recorded as the stage was
) translated in one of two ways: a sequence of linear transla-
Pg(X) = _ ko e p(— kx > (23) tions or a continuous c_ircular _transl_ation. _
27kgT 2ksT An ensemble of particle trajectories was generated by lin-

. . o early translating the microscope stage in a square velocity
Thus, at long times, or in steady state, the distribution Ofprofile: the stage was stationary for 5 s, translated \af,—

particle positionsx, in a stationary trap is identical to the =0.29um/s for 20 s, stationary for another 5s, and then
distribution of particle positions relative to the trap centeriranslated at Vopi=—0.29 um/s for an additional 20 s. This
that translates according tQut—&voy/K; i.e., the distribu-  sequence was repeated for up to 400 cycles with simulta-
tion of steady-state positions is dragged along by the trameous recording of the particle position at millisecond inter-
but always lags a distane®,,/ k behind the trap center. The vals. The time over which the stage is stationary is sulffi-
expressions for distributions of trajectories that initiate andciently long compared to the relaxation time of the colloidal

remain at steady state is thus straightforward: particle in a stationary harmonic potentiak= £/k=120 ms
_ B (wherek=0.48 pN/um for these linear trajectorigsso that

P(ro,rd) = Pa(Xo=ro+ &Vop/k) X G(X; =1t = Vopt the particle position was distributed in the trap according to

+ EVoplK,Xo = Mo+ EVoplK,1). (24)  equilibrium conditions at the start of stage translation. Dur-

ing the first 10 s of translation, the particle position, mea-
Thus, from the defining Eq$19) and (24), the dissipation sured relative to the trap center, follows neither an equilib-
function, expressed for a steady-state trajectory of durafion rium nor steady-state distribution. During this transient
is exactly[9] period, the measured particle position was used to analyze
oot (ri=10) the dissipation function under transient conditions, as was
opt t o (25) originally achieved by Wangt al. For the remainder of the
kT 1-exd-t/7) translating wave, 18t<20 s, the distribution of particle
| positions follows a time-independent, steady-state distribu-
ion: this portion of the particle trajectory was used to con-

Qr) =

As we demonstrate in Sec. IV, this dissipation function wil
satisfy the FT under nonequilibrium steady-state conditionst, SN .
including short times. In our experiment we measure and"Uct the steady-state dissipation functions. .

record the trajectories of a colloidal particle, evaluating the A smgle long trajectory was g_energted by contlnupusly
approximate and exact dissipation functio@I’) and translating the microscope stage in a circular path. This was

Q,(r), respectively, from the same sets of steady-state trajeé!Ch'eVed by feeding synchron_lsed sine and cosine voltage
tories waves to two perpendicular piezo crystals attached to the

microscope stage. The radius of the circular motion was
7.3 um and the frequency of the circular motion was 4 mHz.

lIl. EXPERIMENTAL SETUP At this low velocity, corresponding to a tangential trap ve-
_ _ _ ~locity of —v,,=0.18 um/s, the stage motion can be treated

The equipment used to generate the particle trajectories imply as a long linear translation. A laser intensity stabilizer
similar to that used in the original drag experiment of Wang(Model BEOC-LPC, Brockton Electro-Optics Corp., USA
et al. [6]. It consists of a Nikon DIAPHOT 300 inverted was incorporated in optical path, allowing us to produce and
microscope equipped with a 180 (N.A.=1.3) oil-  control a weaker trap and increase the relaxation time of the
immersion objective lens and a 1 W infrared laser  system so that more “entropy-consuming” trajectories could
=980 nm for trapping micron-sized particles, a servo-motor be sampled over longer time. The trapping constant was de-
controlled microscope stage with fine piezo-controlled transtermined to bé&k=0.12 pN/um and the relaxation time of the
lation in thex-y plane, and a quadrant photodiode sensor foistationary system was=0.48 s. This single long trajectory
detection of particle position with resolution 15 nm. Laseris advantageous for studying steady-state trajectories as it
power, objective focus, and servo-motor controlled motion ofmaximizes the amount of steady-state data; only the first few
the microscope stage are controlled though computer intesseconds of the initial, transient trajectory are discarded from
faces developed by Cell Robotics Inc., USA. Fine translatiorthe steady-state analysis. The long trajectory was evenly di-
of the microscope stage is achieved by feeding the voltageided into 75 second-long, nonoverlapping time intervals,
signal from an arbitrary function generatdTGA1242, then each interval was treated as an independent steady-state
Thurlby Thander Inst., UKto the stage-mounted piezocrys- trajectory from which we constructed the steady-state dissi-
tals. pation functions. This circular drag experiment allowed us to

Approximately 50 particleg6.3 um in diameter were  analyze the steady-state dissipation function over longer
added locally into a stage-mounted, glass-bottomed cell, cortimes, up to 75 s, than in the case of the shorter linear drag
taining a 3.0 ml aqueous solution of 10 mM Tris-HCI experiment which afforded only 10 s of nonequilibrium
+1 mM EDTA, maintained at @H of 7.5. One particle was steady-state data. However, as we collected only one trajec-
optically trapped, isolated from the other particles, and usedory, the circular drag experiment cannot be used to analyze
to calibrate the quadrant photodiode detector and optical traghe dissipation function under transient conditions.
strength. The optical trapping constakitwas determined by It is important to recognize that two different sets of ex-
sampling the particle’s position in a stationary trap for 120 sperimental data were collected: trajectories where the stage is
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linearly translated, and another where the stage is circularly
translated. Furthermore, for each set of trajectories, we ana-
lyze both steady-state dissipation functions, i.e., Et) de-
rived from deterministic dynamics and E@5) derived from
stochastic dynamics. To demonstrate experimentally the FT/
SSFT, we present our data in terms of the integrated fluctua-

PHYSICAL REVIEW E 71, 046142(2009

0.5

0.25

LHS-RHS
o

-0.25

tion theorem(IFT), a form of the theorem that compares total
positive to total negative dissipation:

P(Q,<0)

P(Q;>0)
where (), is given by the dissipation functiof)(I), the
steady-state dissipation functidi(r), or the transient ana-

log of Q.(r) given in[9]. For the SSFT, we can analogously 0 ‘ :
express an integrated form as 0 2 4 6 8 10

P(Qfs< 0) @
im ———— = {exp(—- Q) ss-q. 27
M BO=> 0) (exp( ﬂ)nt%o (27)

Time(s)

LHS, RHS of FT

= (exp(- Qoo (26)

where, again{);5, is an approximate form of the steady-state

dissipation function, given b@SxT), [Eq. (18)]. 02

08 \

IV. EXPERIMENTAL RESULTS

LHS-RHS
o

Figure 2 shows the integrated form of the FT evaluated 0%

from a set of 400 trajectories of a colloidal particle in a
linearly translated optical trap. In Fig(&, the FT is ana-
lyzed using the deterministically determined dissipation
function evaluated from an initial equilibrium stat@,(I")
=(kBT)‘1fgds(fopt-vop,). That is, the dissipation function is
accumulated for each trajectory, starting froaD, when the
particle is equilibrated in the stationary trap and the trap
translation is initiated, to some tinteafter the stage begins 0 !
to translate. The time dependence of the LHS and RHS of the 0 2 4 6 8
IFT (P(Q(I") <0)/P(Q(I")>0) and (exd ~(I") Do,x)>0. (b) Time (s)

respectively are, to within experimental error, identical as

predlt_:ted by t_he FT'_ Data similar to that Shoyvn in Fige)2 FIG. 2. (Color online The integrated FT results from a single
M f'r,St published |n.Wangt gl. a,s an experlmenta_l dem- set of 400 linear drag experiments where the argument of the FT
onstration of the transient application of the fluctuation theo{s e determinstically ~ derived  dissipation  function,
rem using a nearly identical experiment. (kBT)—lfgdS(fOpt_vom)_ The optical trapping constant isk

In Fig. 2b), the steady-state portions of the same 400-0.48 pN/jum, stage velocity V,,=0.29um/s, and the 6.3m
trajectories are used to construct the approximate steadywolloidal particle’s position is sampled at 1 kHz over 20 s trajecto-
state dissipation functio®)I'). Here, the first 10 s of each ries. In(a) the dissipation function is accumulated, starting from an
trajectory, corresponding to the transient response of the sysaitial resting (equilibrium position in accord with the exact form
tem to the step change in stage translation, is discarded amd Q(I"), that is the trajectories analyzed include transient response
the remaining trajectory segments are used to construct tHe the initiation of trap translation from=0 tob=t. The LHS of the
approximate steady-state dissipation functio€®)I')  IFT. P(Q(I") <0)/P(Q(I")>0) (-@-), and RHS of the IFT,
= (ke )Y/ 4 5%l fopVop)- These truncated trajectory seg- (EXH-(I)Dayr)=o (-A-), are plotted against timé, or the du-
ments are characterized as steady state, as the initial 10&ion of the trajectory. Also shown is a prediction B{Q(T')
of discarded data far exceeds the relaxation time 01;;0)(/2 Zgﬂltrgét?soi:gr;ujts (l);l;:ugfg?df;?; _ito)cgizt'ffo?%’?ﬁénl':‘f

. . _ . . . . I - V —

gzg)'St?ﬁgnZ%la;éS;ﬁsmT Ll-gllsk ;LnZ(;) nl;sl_"SASO?h?r\]Aén ;Ee';:,%m,prediction of unity(li_ne). In (b) the dissipation functiorﬂfs(l“_) is
P(QSYI) < 0)/P(QI)>0) and <eXF[‘QtSS(F)]>QfS(r)>ov accumulated froma=10 s after the start of stage translation and

. Y accumulated for a furtherseconds td=10+t. That the system is
agree only at larger time segmeifits- 2s). This is in accord

. i < ) at a steady state after 10 s of stage translation is justified by the
with the approximate form of);” for which the FT holds value of 7=120 ms. The LHS of an integrated-form of the SSFT,

only in the asymptotic time limit, or in accord with the SSFT p(QT") <0)/P(QT) > 0) (-@-), and the RHS of the integrated-
[Eq. (27)]. form of the SSFT{exp[—QfS(F)])Q‘ss(FDO (=A-), are plotted against

As we are comparing functions which approach zero athe segment time, Inset shows LHS-RHS versusgainst the FT
long times, the equivalence of the LHS and RHS can berediction(line).

o 2 4 6 8
Time(s)

LHS, RHS of SSFT
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more easily viewed when the experimental data is replotted QX)) T t
as LHS-RHS versus(inserts of Fig. 2 The FT prediction is 2 =2X 3 1-—|1-exg-—||[- (29
shown as a line in both insets. The FT written for the full Tasr)

dissipation function)(I"), is obeyed at all time while the
FT cast using the approximate steady-state dissipation fun

. S ; : - -
tion, QAT 'S opeyed only in the'long-t|me'||r;1|t. N.ote that number of experimental trajectories. Equati¢28) and(29)
the asymptotic limit of the SSFT is met whil&II') is ap- g, ther emphasize that the FT does not predict the time scales
preciably larger than zero. A very similar result to Figb2 e whichQ, <0, or in language of Wangt al, over which
was recently shown by Garnier and Ciliberto who found that“entropy-consuming” trajectories are observable. The gov-
the steady-state dissipative power of a resistor/capacitor igming equations of motion and the distributions of initial
parallel, driven out of equilibrium by small current, follows giates determine these time and length scales.
the SSFT[10]. ) . Figure 3 demonstrates the integrated form of the FT using
The form of the curves of Fig.(d) can be determined goaqy.state segments from a single, circular drag trajectory
from the probability distributions associated with observing:, caiculate the approximate steady-state dissipation func-
trajectories of duratiort having dissipation functiof(I'),  ion OSYI). As the duration of the single trajectory is con-
P(Q(I). In Appendix A, we derive expressions for gigeraply longer than that of the linear drag trajectories, we
P(Q(I")) as well as the resulting form of the integrated FT, 5r0 aple to construc®T) for segment times of 75 s, as
compared with only 8—10 s in the linear drag case. Conse-
1 — quently, agreement of the LHS and RHS is shown over a
PQT) < 0) 1—err(§\’w(t)) significantly longer time scale in the circular drag experi-
t = , (28) ment. Figure &) shows the first 10 s of data and the inset
P(Q(I") > 0) 1+eri(l m) shows the data replotted in the form, LHS-RHS: like the
! linear drag results, there is a lack of equivalence of the LHS
and RHS over short segment times, as anticipated from the
SSFT.
In Fig. 4, we have reanalyzed the same experimental data,
using the stochastically derived dissipation functiQgy) of
ot Y Eq. (25). This dissipation function is exact; i.e., there are no
w(t) =F o (1-e™) approximations made in going from its fundamental defini-
tion, Eq. (19), to its closed-form expression. The LHS and
RHS of the FT are constructed usifXyr) and plotted versus
and F?=¢%5,/ (KkgT). F is a dimensionless measure that segment time in Fig. @) for the linear drag data in Fig.(8)
characterizes the opposing forces acting on a particle locator the circular drag experiment. Both show that the FT holds
ized in the optical trap and is given as the ratio of the lagover all time, including short times. The decay time of the
distance £Vop{/k, to the typical particle position within the fluctuations at steady state is longer for the circular trajecto-
trap, given by equipartition askgT/k. For translating trap ries (i.e., “entropy-consuming” trajectories persist over
experiments with different trap velocities and trap strengthsjonger time scales indicative of 72, ../ Finear=1.5. The
F? is a convenient measure of the relaxation time of theinsets of the figures more clearly show that the FT holds over
translating trap. If the trap is stationary, théi=0 and the  all segment times, including short segment times, when the
relaxation time is simplyr=&/k; for translating trap systems, steady-state dissipation function is expressed exactly, using
the larger 72, then trajectories with negative dissipation stochastic dynamics),(r). This is in contrast to the deter-
functions persist over longer times. The prediction, @8,  ministically derived steady-state dissipation functidiT’),

did not compare favorably with the original experimental or which the theorem does not hold over short time seg-
results of Wanget al. [6], presumably because of unac- ments.

counted forces in that original experiment. However, as Fig.
2(a) shows, the experimental results presented here compare
very favorably to this stochastic prediction. V. CONCLUSIONS

For steady-state trajectories where the approximate dissi- . . .
pation function,(;YI'), is used, the functional form of the In this paper, we demonstra_lt.e (_experlmentally the applica-
asymptotic approach to the FT can also be constructed an jon of the FT und_er none'qwllbrlur_n stgady states .ablr
iytically, using the analytic distributioR(QXT")) derived in Imes, using a colloidal particle localized in a translating op-

. o s . . tical trap. Starting from the fundamental definition of the
Appepdlx B. The dlstr|bgt|on .Oﬂt.s(r). is Gaussian for af, dissipation function as a measure of trajectory reversibility,
and, in order for Gaussian distributions to obey the FT, th

_ . N N&e construct closed-form expressions for the dissipation
magnitude of the_va_rlan_ce of the d!stn_buu_on must be WICE nction ), using both deterministic or Newtonian dynam-
the mean of the distribution. From distribution functions CON-is and ,stoézhastic or Langevin dynamics, and evaluate each
structed frqm StOChaSt',C dyngmlcs, We _Sho_w in the Append%f the experimental trajectories using these two expressions
that the ratio of the variance in the d'St”b“t'Q‘ifS(r)’ tothe  for . Under steady-state conditions, it has not proven pos-
mean of the distribution(2;YI")), approaches 2 according to sible to construct an exact expression for the dissipation

Because of strong sensitivity of the variance to the size of the
%ystem, we cannot easily compare E20) with the limited

where
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FIG. 4. (Color onling The integrated FT results fror®) 400
éi_near drag trajectories an) a single circular drag trajectory, us-
Ing an exact expression for the steady-state dissipation function,
derived from stochastic dynamic&,(r). The experimental details
are given in the captions of Figs. 2 and 3. The LHS of an integrated-
¢ form of the FT, P(Q(r)<0)/P(Qy(r)>0) (-®-), and the RHS of

FIG. 3. (Color online The integrated FT results from a single
circular drag trajectory using the approximate, steady-state dissip
tion functionQI) = (kg T)™1/5"dS(fopt- Vopd, Wherea takes on val-
ues of multiple values of 75 s, plotted for time ranges O<t
<75s and(b) 0<t<10s. The optical trapping constant ks

=0.12 pN/um, the stage is circularly rotating with a diameter o .
14.6 um at 4 mHz, corresponding to a tangential velocity of the mtegrated-form of the_FTeXF{_,QT(r)]>Qt<f)>0 (=A-), are plot-
0.18 um/s, and the 6.3:m colloidal particle’s position is sampled ted against the segment tinteThe inset shows LHS-RHS versts

at 1 kHz over the single trajectory. As the ratio of the dimensionles@9@inst the FT predictiodine).
5 . . . : ;
measureF- of the circular and linear translating trap experiments 'Sonly in the long time limit: indeed the FT written in this

Fercutar! F 'Zi.”earzl'S’ “gntropy-t_:onsuming” trajectories pgrSiSt over asymptotic time limit is referred to in the literature as a sepa-
a longer time scale in the circularly translated experiments With ;0 o qrem the steady-state fluctuation theorem or SSFT.
{1} <0 for t up to 50 5. The LHS of an integrated-form of the In contrast, when a closed-form expression of the steady-
SSFT,P(I) <0)/P(AAT) >0) (-8, and the RHS of the in- state dissi 'ation function is derived epxactl usin stochastiz
tegrated form of the SSFTexp{—QfS(F)]mtss(F)w(—A—), are plot- SSIp . h h hol y ”g - hi ’
ted against the segment tinteThe inset shows LHS-RHS versus Langevin dynamics, then t. e_F'_I'_ olds over a tl_me. This
against the FT predictiofline), further demonstrating the lack of suggests _that _the qsymptotlc limit in the SSFT is simply due
equivalence at short times, due to the approximate dissipatioﬁ0 approximations in the argument _Of thg theorem, and that
function. when the argument of the theorem is derived exactly, the FT

is operative over all time. However, it is important to recog-
function using deterministic dynamics, and it is necessary tmize that it may not always be possible to construct exact,
approximate the steady-state dissipation function with itlosed-form expressions for steady-state dissipation func-
form in the asymptotic time limit2;I'). Consequently, tions using stochastic dynamics, and in such cases approxi-
whenQ{T) is used as an argument in the FT, the FT holdsmate dissipation functions are necessary.
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Hence the solution fow(t) [which is justx(t) minus the sum

APPENDIX A: DERIVATION OF A CLOSED-FORM of the random displacemerjtis
EXPRESSION FOR P(Q;<0)/P(Q;>0) FOR TRANSIENT

t
TRAJECTORIES OF A PARTICLE IN A , , ,
TRANSLATING TRAP W(t) = Xo exp(=t/7) + &+ f dt'{exd - (t—t")/7] - L}g(t’).
0
We are interested in deriving a closed-form expression for (A5)
P(Q;<0)/P(;>0), where(), is taken to be the determin-
istically derived dissipation function Now we seaw is simply the sum of a number of terms, all of
which are Gaussian. Heneeitself has a Gaussian distribu-
1 [ tion:
Q=) = k_Tf ds(fopt ) Uopt)- (A1)
Bl Jo

Gu(W,Xo,t) = [27B(1)] ™ exp{— [w — A() /[2B(1) ]}

[In this appendix, we have shortened notation, dropping the (AB)
argument of the dissipation function such thg(I") is writ-

ten as(,. All trajectories are described deterministicglly. HereG,(w,xo,t) is the probability of findingn(t) given that
The form of the LHS or RHS of the FT depends upon theXx=X, at time t=0. To determine the meaA(t) is simple:
distribution of trajectories with given values 6. In this  A(t)=(w(t))=x,eV" where the() is an ensemble average.
appendix we derive an expression for the distribufRgf,), B(t) may be determined as follows:

and hence an expression fe((); <0)/P({;>0), using sto-

chastic dynamics. It is important to recognize that the dissi- B(t) = {(w(t) — A(H)]?

pation function is derived under deterministic dynamics; t t

however, the functional form of the distribution of trajecto- =¢? J dt; f dtz[e_<t_t1)/7'— 1]

ries is derived using stochastic dynamics. For simplicity, we 0 0

cast our derivation in one dimension; an extension to higher X[ 727 — 1(g(t)g(t,). (A7)

dimensions is straightforward.

From the distribution of particle positions, we can con-Noting that the noise correlation is a delta function allows
struct a distribution of(); at any given timet. Noting that 56 to readily integrate this so that

foptt frand farag=0, i.€., fop=&dr/dt—g(t), and using this in

the definition and integrating gives KaT
B(t) = %(m + 47— @27 37), (A8)
- gv
O =——{o) = [r() =r(O)1}, (A2)
t keT The initial distribution ofx, is the Boltzmann distribution

and is
wherer(0) is the initial position of the particle and(t) is

St)=¢&1ftdsgs). Physically the two terms i), can be K K oot
identified as follows: thes(t) contribution arises from the Py (X0) = exp - (Xo_ Op) . (A9)
random forces alone and the second term, proportional to

r(t)-r(0), represents the contribution from the integratedrys gives us directly the probability distribution for the dis-

drag force. It is important to note that these two terms are ”Oéipation SiNCav=KsTQ/ &0 g+ Xo—vopt. INtegrating ovew,
independent, since the displacement at any time dependse|ds op op

upon the history of the random forces. We can reexpress this

in terms of the moving coordinate systetrusing r=x+ut keT [* ksTQ,
—&vopd k andro=xy— &vopd k. The dissipation is then PQt(Qt) = P f dxoGW< 2 - opt + X~ voptt,xo,t> PXO(XO).
opty —o
== S0 - X0 v+ (AD (a10)
B

Introducing the function
We already know the distribution of (it is an equilibrium,
Boltzmann distribution What we require is the distribution _ 2t 1t
of w(t)=x(t)— &(t), since if we know this we can then con- w(t)=F T 1-e7)
struct the distribution of), and hence everything about the
problem. We know how to solve the stochastic differentialallows us to write the distribution function for the dissipation
equation forx(t): its solution is as

(A11)
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That is, the optical trap has been moving for some time and
the particle is located at its steady-state position for the entire
observation timet. As the transienf), satisfies the FT(2;®
satisfies the FT only in the long time limit.

The derivation of the distributio®((); is similar to that
sof P(Q,) given in Appendix A. The only difference is that the
distribution of initial positions is no longer the equilibrium
distribution of positions in a stationary trafEq. (A9)]. In-
stead, the initial distribution is that of a particle in equilib-
rium in the moving coordinate frame,

P(¥o) = VZkaT exD( 2kBT>

[Qt w(t)]2>

(A12)

From this the FT is easily verified®({),)/P(=Q) =exp(),).
The probabilities of positive and negative dissipation path
are

P(0) = S0 e -

P.=1+lerf[iVo()] (A13)

From these the IFT is easily verified.
Note thatP(it) is Gaussian with a meaiand peak w(t)
and width~/w(t). The peak always moves towards positive

. At long times it does this linearly in time at a speed . . .
&2,/ (k). This speed is independent of the well strerigth Solving Eg. (A10) using the absc;ve equation fdPy (xo)
.yields a Gaussian distribution 61~

and has a simple physical interpretation—it is just the dissi

(B2)

pation production assuming the particles are dragged along p( (st 9532
at speedq, ¢ At short times the dissipation peak moves more Pgss(ﬂsﬂ ,  (B3)
slowly as 2(§uopt/kkBT)(t/r)2 (corresponding to diffusive \/ 7Wgss 2%53
motion). At long times we have w(t)= (gvopt/ kgT)t .
~(£%5,/KkgT) where the first term arises from the dissipa- where the mean value of the distributicns, is
tion production in steady stat@lluded to aboveand the _ k t
second term is due to the initial transient. O°= ﬁ(voptT)z(;) (B4)
B
. . .. .2 .

APPENDIX B: DERIVATION OF THE RATIO OF THE and the variance in the distributionr. is

MEAN TO VARIANCE OF THE DISTRIBUTION  P(Q{9 ) 2Kk ¢

Our aim is to derive an expression QS whereQSSis 7057 kg kT Von” ( ;o Lrex t/T)>' .

the deterministically derived steady-state dissipation functiori:or Gaussian distributions to obey the FT, the variance of the

s s 1 [t distribution must be exactly twice the mean. Here, for the
Q =) S(F) = _f ds(fopt'vopt)a
0

(B1)  distribution of QS the ratio of the variance to mean is

o _ " Q1)
where the time integral is taken over steady-state conditions. Q9
[In this appendix, we have shortened notation, dropping the

argument of the dissipation function such thgf(I") is writ-  so that only in the limit of the> 7 will the FT be valid, in
ten as;° All trajectories are described deterministicdlly. accord with what is known about the SSFT.

2><<1——[1 exd- t/7)]> (B6)
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KVptt EVopt
_ p ___>7opt) _
Qt(r)'<|<BT[1—exn— /7] kBT) (re=ro)-

The first term on the RHS represents the transient contribution
associated with displacing the particle with the bead from the
center of the trap to the lag distance. The second term on the
RHS is the steady-state contribution and is equivalent to the
stochastically derived steady-state dissipation function, Eq.
(25), investigated in this paper.
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