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The fluctuation theoremsFTd quantifies the probability of second law violations in small systems over short
time scales. While this theorem has been experimentally demonstrated for systems that are perturbed from an
initial equilibrium state, there are a number of studies suggesting that the theorem applies asymptotically in the
long time limit to systems in a nonequilibrium steady state. The asymptotic application of the FT to such
nonequilibrium steady states has been referred to in the literature as the steady-state fluctuation theoremsor
SSFTd. In this paper, we demonstrate experimentally the application of the FT to nonequilibrium steady states,
using a colloidal particle localized in a translating optical trap. Furthermore, we show, for this colloidal system,
that the FT holds under nonequilibrium steady states forall time, and not just in the long time limit, as in the
SSFT.
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I. INTRODUCTION

In many areas of physical chemistry, researchers strive to
understand new systems through deterministic equations of
motion. They seek to quantify microscopic forces and under-
stand how a system responds to external perturbations, using
techniques such as molecular dynamics simulation. At the
heart of this endeavor is the notion that if the equations of
motion or trajectories of the system are known, then any
question about that system may be answered. However, such
deterministic equationsssuch as Newton’s equationsd are
time reversible, so that for every trajectory there exists a
time-reversed trajectory or “anti-” trajectory which is also a
solution to the equations. The relative probabilities of ob-
serving bundles of conjugate trajectories quantifies the “re-
versibility” of the system: if the probability of observing all
trajectories and their respective antitrajectories are equal, the
system is said to be perfectly reversible; on the other hand, if
the probability of observing antitrajectories is vanishingly
small, we say that the system is irreversible. The second law
of thermodynamics stipulates that a system evolves irrevers-
ibly in one “time-forward” direction, i.e., the probability of
all antitrajectories is zero. However, the second law strictly
applies to large systems over long time scales and does not
describe the reversibility of small systems that are of current
scientific interest, such as protein motors and nanomachines.
This long-standing question of how irreversible macroscopic
equations, as summarized by the second law of thermody-
namics, can be derived from reversible microscopic equa-
tions of motion was first noted by Loschmidtf1g in 1876.

The fluctuation theoremsFTd of Evanset al. f2,3g de-
scribes how a system’s irreversibility develops in time from a
completely time-reversible system at short observation times,
to a thermodynamically irreversible one at infinitely long
times. That is, it bridges the microscopic and macroscopic
descriptions, relating a system’s time-reversible equations of
motion to the second law. Specifically, the FT relates the
relative probabilities of observing trajectories of durationt
and their conjugate antitrajectories, each characterized by the
dissipation function,Vt, taking on arbitrary valuesA and −A,
respectively:

PsVt = − Ad
PsVt = Ad

= exps− Ad. s1d

The dissipation function,Vt, is, in general, a dimensionless
dissipated energy, accumulated along the system’s trajectory;
expressions forVt differ from system to system. It is an
extensive property, i.e., its magnitude scales with system size
and observation time,t. Thus, Eq.s1d also shows that as the
system size gets larger or the observation time gets longer,
antitrajectories become rare and it becomes overwhelmingly
likely that the system appears time irreversible, in accord
with the second law. In addition, Eq.s1d also shows that the
ensemble average of the dissipation function is positive for
all t and for any system size; i.e.,kVtlù0 which is referred
to as the second law inequalityf4g. However, the FT does not
prescribe the time or length scales over which such irrevers-
ibility evolves. This is gleaned from the specific equations of
motion governing the system as well as the distribution of
initial states of the system.

In the literature, the reader will find two different labels
for the fluctuation theorem, depending upon how the theorem
is applied. The transient fluctuation theorem or TFT is sim-
ply Eq. s1d applied to transient systems, i.e., systems that
evolve from a known initial equilibrium state towards a final
equilibrium or nonequilibrium steady state. The steady-state
fluctuation theorem or SSFT refers to the steady-state appli-
cation of the theorem, where the dissipation function is
evaluated over trajectory segments of durationt, sampled
wholly under nonequilibrium steady-state conditions. When
Vt is evaluated for steady-state trajectories, the theorem is
said to hold only in the long time limit,

lim
t→`

PsVt = − Ad
PsVt = Ad

= exps− Ad, s2d

which is precisely the form of the SSFT given in the litera-
ture. As we show in this paper, the asymptotic limit in the
SSFT is a result ofapproximationsmade in the argument of
the theorem, the dissipation function,Vt. When we are able
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to expressVt exactly, the asymptotic limit is no longer
needed and the operative theorem under steady-state condi-
tions is the FT, Eq.s1d. Thus, while the literature and its
nomenclature might indicate that there are two different
theoremsf5g, the FT is general and applicable to both tran-
sient and steady-state conditions. As the detailed proofs of
steady-state and transient applications of the FT are different,
we will use the labels SSFT and TFT to refer to these differ-
ent proofs, as well as to the application of the asymptotic
limit in Eq. s2d.

To demonstrate the use of the FT under steady-state con-
ditions, we chose a system where the dissipation function
can be approximated for deterministic dynamics and ex-
pressed exactly for stochastic or Langevin dynamics. This
system is based upon the drag experiment used by Wanget
al. f6g where a colloidal particle is weakly held in a station-
ary optical trap that is translated uniformly with velocityvopt
starting att=0. Initially the particle’s position in the har-
monic well is distributed according to an equilibrium Boltz-
mann distribution with an average particle velocity of 0.
With trap translation, the particle is displaced from its equi-
librium position until, at some later time, the average veloc-
ity of the particle is equal to the trap velocity and the average
particle position is determined by a balance between the op-
tical force and hydrodynamic dragsFig. 1d. From this point,
the system is in a nonequilibrium steady state. In their origi-
nal experiment, Wang and colleagues evaluated the dissipa-
tion function, constructed using deterministic dynamics from
an equilibrium initial condition and thereby demonstrated the
FT, Eq. s1d, under transient conditions. In this paper, we
report similar drag experiments using linear and circular
translation of a particle-filled optical trap and evaluate the
dissipation function under steady-state conditions. Consistent
with previous literature on the SSFT, we demonstrate experi-
mentally that the FT holds asymptotically in the long time
limit—but only for Vt derived approximately. However,

whenVt is derived exactly, the FT holds for all time, includ-
ing short times.

The remainder of the paper is organized in the following
manner. In the following section, we briefly review the defi-
nition of the dissipation function for nonequilibrium pro-
cesses and its derivation using both deterministic and sto-
chastic dynamics. We show that closed-form expressions
used in the literature for deterministically derived steady-
state dissipation functions are approximations to an exact,
but insoluble expression. Furthermore, we demonstrate that
for select systems, it may be possible to construct an exact,
closed-form expression for the steady-state dissipation func-
tion using stochastic dynamics. In Sec. III we describe the
experimental system that generates steady-state trajectories
of a colloidal particle localized in a translating optical trap
and in Sec. IV we show, using two sets of data, that the FT
holds for all time under nonequilibrium steady state when-
ever the dissipation function is expressed exactly and not
approximately.

II. DETERMINISTIC AND STOCHASTIC DISSIPATION
FUNCTIONS IN THE STEADY STATE

A. Deterministic derivation of an approximate dissipation
function for steady-state trajectories

For a Newtonian, deterministic system, a system’s state is
described in terms of the coordinatesq and momentap of all
constituent molecules, including solvent molecules, and is
represented by a point in phase space,G;hq ,pj. For every
trajectory that is initiated atG0;hq0,p0j and terminates at
Gt;hqt ,ptj in a system of reversible dynamics, there is a
unique conjugate or antitrajectory that starts atG0

* ;hqt ,
−ptj and ends atGt

* ;hq0,−p0j. Let dVsGs;hqs,psjd repre-
sent a volume element of a bundle of trajectories at times.
Then the corresponding bundle of conjugate trajectories or
antitrajectories has the volumedVsGs

* ;hqt−s,−pt−sjd at time
s. As the dynamics are deterministic, a set of trajectories
spanningG0 and Gt sas well as the corresponding set of
antitrajectoriesd is completely specified by the duration of the
trajectories,t, and a set of phase-space points at arbitrary
time s, 0øsø t, dVsGsd.

A measure of reversibility,Vt is the ratio of the probabili-
ties of observing sets of trajectories and their time reverse or
antitrajectories. The probabilities of the trajectory/
antitrajectory can be described by the probabilities of the
volume elements at any arbitrary times along the system’s
trajectory:

VtsGd = lnS P„dVsGsd…
P„dVsGs

*d…D , s3d

where we haveG as an argument to the dissipation function,
VtsGd, to signal that the dissipation function is derived using
deterministic dynamics. The reader may recognize Eq.s3d as
an alternative description of the FT. Equilibrium statistical
mechanics provides probability distributions that are simple
explicit functions of the phase space,G. But it is not possible
to cast closed-form expressions of distributions of nonequi-
librium states in phase-spacef7g. However, if we specify that

FIG. 1. The transient and steady-state motion of a colloidal par-
ticle, shown as relative particle velocity,v̄std /vopt versus scaled
time t /t, localized in a stationary optical trap that is translated with
constant velocityvopt starting att=0. This average of the particle
velocity, measured in the direction of the trap translation, is pre-
dicted from a balance of optical force and hydrodynamic drag:
v̄std=s1/tdfr̄std−vopttg where v̄std=dr̄std /dt, t is the characteristic
timescale of relaxation, and the average initial position of the par-
ticle is at the center of the optical trap,r̄st=0d=0. A steady-state
trajectory of the particle corresponds to trajectory time,t.5t,
wherev̄std /vopt no longer varies in time and is approximately unity.

WANG et al. PHYSICAL REVIEW E 71, 046142s2005d

046142-2



all trajectories are intiated under equilibrium conditions, then
the phase-space probability distributions are known initially,
s=0. The dissipation function is thus written for determinis-
tic systems as

VtsGd = lnSP„dVsG0d…
P„dVsG0

*d…D . s4d

Consequently, in order to formulate a closed-form expression
for the dissipation function under deterministic dynamics,
the trajectories must start from an equilibrium state.

To illustrate Eq.s4d with a specific system, considerVt
for an optically trapped particle whose coordinate and mo-
menta are given byqs

1 andps
1 at times, in a sea of identical

particles that are otherwise unaffected by the trap. Att=0,
the stationary trap is set in motion with constant velocity
vopt. This is the molecular analog of Wang’s colloidal experi-
ment. Here P(dVsG0d),exp(−HsG0d /kBT), where the
Hamiltonian is HsG0d=Ksp0d+Fsq0d+Foptsq0

1d with Ksp0d
and Fsq0d designating the system’s kinetic energy and the
potential energy arising from interparticle interactions, both
being constants of the isothermal system. The trap potential
at any time,s, is Foptsqs

1d= 1
2ksqs

1−voptsd2, wherevopts is the
position of the trap center, initially located at the origin.
Likewise, the distribution of antitrajectories,P(dVsG0

*d), is
determined by the Hamiltonian evaluated atG0

* , or equiva-
lently at the phase-space destination point,Gt of the forward
trajectory, evaluated under initial, equilibrium conditions:
HsG0

*d=Ks−ptd+Fsqtd+Foptsqt
1d. Some care is needed in

evaluatingFopt: in order to preserve the time-reversal map-
ping, the optical trap center is located atvoptt at the start of
an anti-trajectory. Thus

VtsGd = lnSexpf− HsG0d/kBTg
expf− HsG0

*d/kBTg
D s5d

=
1

kBT
fHsG0

*d − HsG0dg s6d

=
1

kBT
fHsGtd − HsG0dg s7d

=
1

kBT
E

0

t

dsSdHsGsd
ds

D s8d

=
1

kBT
E

0

t

dsSdKspd
ds

+
dFsqd

ds

+
dFoptsq1d

ds
D s9d

or

VtsGd =
1

kBT
E

0

t

dssfopt ·voptd, s10d

where we have used

−E
0

t

ds
dKspd

ds
=E

0

t

ds ksq1 − voptsd
dq1

ds
+E

0

t

ds
dFsqd

ds
,

and

E
0

t

ds
dFoptsq1d

ds
=E

0

t

ds ksq1 − voptsd ·Sdq1

ds
− voptD

and wherefopt;−dFopt/dqs
1 is the optical force acting on the

particle. It is important to emphasize again that the system is
constrained to be at equilibrium at the lower time integration
limit, t=0. For a strict derivation that includes thermostatting
constraints and phase-space compression factors, the reader
can follow the deterministic derivation ofVtsGd provided by
Reid et al. for a stationary trap whose strength increases at
t=0 f8g. For the drag experiment,VtsGd corresponds physi-
cally to the time integral over the instantaneous rate of work
VsGd;skBTd−1fopt·vopt required to translate the trap with
constant velocityvopt. If the trap contained no particle, no
energy would be dissipated in translating it. In Wang’s col-
loidal experiments, particle trajectories withVtsGd,0 were
observed in a weak, slowly translating trap up to 2–3 s after
trap translation. That is, heat fluctuations in the surroundings
provided useful work for up to a few seconds. For larger
systems, this would be a violation of the second law of ther-
modynamics and, consequently, Wanget al. referred to these
observable trajectories as “entropy-consuming.” It is impor-
tant to emphasize that the strict derivation of Eq.s10d from
Eq. s4d requires that the time integration start under equilib-
rium conditions so that distributions of initial particle posi-
tions are known.

As the deterministic definition ofVt requires that the rela-
tive probabilities of trajectories be made under initial, equi-
librium conditions, it is not possible to construct exact ex-
pressions forVtsGd for trajectory segments of durationt that
are wholly at a nonequilibrium steady state. However, as the
dissipation function is extensive, an approximate steady-state
dissipation function can be constructed in the following way.
We can castVt in terms of its instantaneous rate of change,
Vssd at times, accumulated from an initial equilibrium state
at times=0 to some arbitrary time,t:

Vt =E
0

t

dsVssd +E
t

t

dsVssd. s11d

Here we have introducedt as an arbitrary “cutoff” time that
is sufficiently large that the system can be regarded as being
in steady state fors.t, so thatVt is cast as a sum of tran-
sient and steady-state contributions. The steady-state contri-
bution is identified with the steady-state dissipation function,
Vt

ss, which we can use to approximateVt with an error of
ordert:

Vt < Vt
ss+ Ostd. s12d

It is instructive to express these dissipation functions as time-

averages,V̄t=Vt / t, such that
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V̄t < V̄t
ss+ OS t

t
D . s13d

This shows clearly that the error invoked by approximating

V̄t with V̄t
ss vanishes in the long time limit ast / t. However,

the fluctuations in the measureV̄t
ss along a trajectory also

vanish in the longtime limit and, in order that the SSFT be of
any importance, it is necessary that these fluctuations vanish

more slowly thanOst / td, the error in theV̄t
ss approximation.

The measureV̄t
ss along the steady-state portion of a trajec-

tory is

V̄t
ss;

1

t
E

0

t

dsVssd, s14d

which can be reexpressed as a sum of measures taken along
contiguous trajectory segments of durationDt:

V̄t
ss;

1

t
o

i

t/Dt E
si−1dDt

iDt

dsVssd s15d

;
1

t
o

i

t/Dt

VDt. s16d

If Dt is larger than the longest correlation time in the system,
then the sumoVDt is of independent measures and the vari-
ance in the sum is proportional to the number of measures or
t /Dt. The factor 1/t in front of the sum decreases the vari-
ance of the sum by a factort2. Thus, the standard deviation

of the measureV̄t
ss along a steady-state portion of a trajec-

tory diminshes asÎt, at a rate slower than that of the error in

the approximation ofV̄t with V̄t
ss. Consequently, we can ap-

proximateVt in the FT fsee Eq.s1dg with the steady-state
dissipation functionVt

ss, leading to the SSFT:

lim
t→`

PsVt
ss= Ad

PsVt
ss= − Ad

= expsAd. s17d

In this way, the SSFT is an approximation to the FT that is
accurate in the long time limit, i.e., when the transient con-
tribution to the dissipation function becomes negligible, and
well before the fluctuations inVt

ss vanish along steady-state
trajectories. AsVtsGd cannot be easily expressed for steady-
state trajectories, it is approximated specifically for the Wang
experiment by

Vt
sssGd =

1

kBT
E

0

t

dssfopt ·voptd, s18d

where the time integrationstarts under steady-state condi-
tions.Vt

sssGd will satisfy the SSFT or, equivalently, will sat-
isfy the FT asymptotically in the long time limit. It is impor-
tant to note that the asymptotic limit results from our
inability to express distributions of states other than equilib-
rium.

B. Stochastic derivation of the dissipation function
for steady-state trajectories

For some systems described using stochastic dynamics, it
is possible to construct distributions of trajectories that are
wholly in a nonequilibrium steady state. The motion of a
system under stochastic dynamics is no longer described by
the set of coordinates and momenta of all constituent mol-
ecules, but is reduced to coordinates, say in the case of the
Wang experiment, of the colloidal particle,r std=r t. Unlike
Newtonian dynamics, the stochastic equations of motion
cannot be used to construct conjugate pairs of trajectories
through time reversal, as the stochastic force is Markovian.
Moreover, as the particle position is not unique to any given
trajectory, there exist infinitely many trajectories that origi-
nate atr 0 and a subset of these arrive at a given destinationr t
at time t. Let hr 0,r tj represent those stochastic trajectories
that evolve fromr 0 to r t, and lethr t ,r 0j represent a conjugate
set of “backward” trajectories evolving fromr t to r 0. Letting
Psr 0,r td and Psr t ,r 0d represent the normalized probability
distribution of a set of forward trajectory and respective
backward trajectories, then by analogy with Eq.s3d, Reidet
al. f8g expressed the stochastically determined dissipation
function as

Vtsr d = lnSPsr 0,r td
Psr t,r 0dD . s19d

As above, we incorporater as an argument to the dissipation
function, Vtsr d, to signal that the dissipation function is de-
rived using stochastic dynamics.

To illustrate Eq.s19d with a specific system, consider a
stochastic description of the colloidal particle in a harmonic
potential that is translated with velocityvopt,

j
dr

dt
= − ksr − vopttd + gstd, s20d

wherer is the coordinate of the colloidal particle, in a fixed
coordinate frame whose origin is the trap center att=0, j is
the friction coefficient,k is the trapping constant,gstd is un-
correlated Gaussian noise with zero mean, andkgstdgst8dl
=2jkBTdst− t8d. It is convenient to transform this stochastic
equation into a different coordinate system,x, that translates
according tor =x+voptt−jvopt/k. The equation of motion in
the translating-coordinate frame,x, is then

j
dx

dt
= − kx + gstd. s21d

This is the equation for a particle in a stationary parabolic
potential and it has a well-known and simple Green or propa-
gator function:

Gsx,x0,td =
k

2pkBTf1 − exps− 2t/tdg

3expS−
kfx − x0 exps− t/tdg2

2kBTf1 − exps− 2t/tdgD , s22d

wheret;j /k is the typical time scale of the motion. This
expression is the probability distribution associated with the
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particle, initially located atx0, being located atx some time
t later. In the limit of larget, this reduces to the equilibrium
Boltzmann distribution

PBsxd =
k

2pkBT
expS−

kx2

2kBT
D . s23d

Thus, at long times, or in steady state, the distribution of
particle positions,x, in a stationary trap is identical to the
distribution of particle positions relative to the trap center
that translates according tovoptt−jvopt/k; i.e., the distribu-
tion of steady-state positions is dragged along by the trap,
but always lags a distancejvopt/k behind the trap center. The
expressions for distributions of trajectories that initiate and
remain at steady state is thus straightforward:

Psr 0,r td = PBsx0 = r 0 + jvopt/kd 3 Gsxt = r t − voptt

+ jvopt/k,x0 = r 0 + jvopt/k,td. s24d

Thus, from the defining Eqs.s19d and s24d, the dissipation
function, expressed for a steady-state trajectory of durationt,
is exactlyf9g

Vtsr d =
kvoptt

kBT
·

sr t − r 0d
1 − exps− t/td

. s25d

As we demonstrate in Sec. IV, this dissipation function will
satisfy the FT under nonequilibrium steady-state conditions,
including short times. In our experiment we measure and
record the trajectories of a colloidal particle, evaluating the
approximate and exact dissipation functions,Vt

sssGd and
Vtsr d, respectively, from the same sets of steady-state trajec-
tories.

III. EXPERIMENTAL SETUP

The equipment used to generate the particle trajectories is
similar to that used in the original drag experiment of Wang
et al. f6g. It consists of a Nikon DIAPHOT 300 inverted
microscope equipped with a 1003 sN.A.=1.3d oil-
immersion objective lens and a 1 W infrared lasersl
=980 nmd for trapping micron-sized particles, a servo-motor
controlled microscope stage with fine piezo-controlled trans-
lation in thex−y plane, and a quadrant photodiode sensor for
detection of particle position with resolution 15 nm. Laser
power, objective focus, and servo-motor controlled motion of
the microscope stage are controlled though computer inter-
faces developed by Cell Robotics Inc., USA. Fine translation
of the microscope stage is achieved by feeding the voltage
signal from an arbitrary function generatorsTGA1242,
Thurlby Thander Inst., UKd to the stage-mounted piezocrys-
tals.

Approximately 50 particless6.3 mm in diameterd were
added locally into a stage-mounted, glass-bottomed cell, con-
taining a 3.0 ml aqueous solution of 10 mM Tris-HCl
+1 mM EDTA, maintained at apH of 7.5. One particle was
optically trapped, isolated from the other particles, and used
to calibrate the quadrant photodiode detector and optical trap
strength. The optical trapping constant,k, was determined by
sampling the particle’s position in a stationary trap for 120 s

at 200 Hz and applying the equipartition theorem:k
=kBT/ kr2l. Particle trajectories, i.e. particle position versus
time, were then constructed and recorded as the stage was
translated in one of two ways: a sequence of linear transla-
tions or a continuous circular translation.

An ensemble of particle trajectories was generated by lin-
early translating the microscope stage in a square velocity
profile: the stage was stationary for 5 s, translated at −vopt
=0.29mm/s for 20 s, stationary for another 5 s, and then
translated at −vopt=−0.29mm/s for an additional 20 s. This
sequence was repeated for up to 400 cycles with simulta-
neous recording of the particle position at millisecond inter-
vals. The time over which the stage is stationary is suffi-
ciently long compared to the relaxation time of the colloidal
particle in a stationary harmonic potential,t;j /k=120 ms
swherek=0.48 pN/mm for these linear trajectoriesd, so that
the particle position was distributed in the trap according to
equilibrium conditions at the start of stage translation. Dur-
ing the first 10 s of translation, the particle position, mea-
sured relative to the trap center, follows neither an equilib-
rium nor steady-state distribution. During this transient
period, the measured particle position was used to analyze
the dissipation function under transient conditions, as was
originally achieved by Wanget al. For the remainder of the
translating wave, 10, t,20 s, the distribution of particle
positions follows a time-independent, steady-state distribu-
tion: this portion of the particle trajectory was used to con-
struct the steady-state dissipation functions.

A single long trajectory was generated by continuously
translating the microscope stage in a circular path. This was
achieved by feeding synchronised sine and cosine voltage
waves to two perpendicular piezo crystals attached to the
microscope stage. The radius of the circular motion was
7.3 mm and the frequency of the circular motion was 4 mHz.
At this low velocity, corresponding to a tangential trap ve-
locity of −vopt=0.18mm/s, the stage motion can be treated
simply as a long linear translation. A laser intensity stabilizer
sModel BEOC-LPC, Brockton Electro-Optics Corp., USAd
was incorporated in optical path, allowing us to produce and
control a weaker trap and increase the relaxation time of the
system so that more “entropy-consuming” trajectories could
be sampled over longer time. The trapping constant was de-
termined to bek=0.12 pN/mm and the relaxation time of the
stationary system wast=0.48 s. This single long trajectory
is advantageous for studying steady-state trajectories as it
maximizes the amount of steady-state data; only the first few
seconds of the initial, transient trajectory are discarded from
the steady-state analysis. The long trajectory was evenly di-
vided into 75 second-long, nonoverlapping time intervals,
then each interval was treated as an independent steady-state
trajectory from which we constructed the steady-state dissi-
pation functions. This circular drag experiment allowed us to
analyze the steady-state dissipation function over longer
times, up to 75 s, than in the case of the shorter linear drag
experiment which afforded only 10 s of nonequilibrium
steady-state data. However, as we collected only one trajec-
tory, the circular drag experiment cannot be used to analyze
the dissipation function under transient conditions.

It is important to recognize that two different sets of ex-
perimental data were collected: trajectories where the stage is
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linearly translated, and another where the stage is circularly
translated. Furthermore, for each set of trajectories, we ana-
lyze bothsteady-state dissipation functions, i.e., Eq.s10d de-
rived from deterministic dynamics and Eq.s25d derived from
stochastic dynamics. To demonstrate experimentally the FT/
SSFT, we present our data in terms of the integrated fluctua-
tion theoremsIFTd, a form of the theorem that compares total
positive to total negative dissipation:

PsVt , 0d
PsVt . 0d

= kexps− VtdlVt.0, s26d

where Vt is given by the dissipation function,VtsGd, the
steady-state dissipation functionVtsr d, or the transient ana-
log of Vtsr d given in f9g. For the SSFT, we can analogously
express an integrated form as

lim
t→`

PsVt
ss, 0d

PsVt
ss. 0d

= kexps− Vt
ssdlVt

ss.0. s27d

where, again,Vt
ss, is an approximate form of the steady-state

dissipation function, given byVt
sssGd, fEq. s18dg.

IV. EXPERIMENTAL RESULTS

Figure 2 shows the integrated form of the FT evaluated
from a set of 400 trajectories of a colloidal particle in a
linearly translated optical trap. In Fig. 2sad, the FT is ana-
lyzed using the deterministically determined dissipation
function evaluated from an initial equilibrium state,VtsGd
=skBTd−1e0

t dssfopt·voptd. That is, the dissipation function is
accumulated for each trajectory, starting fromt=0, when the
particle is equilibrated in the stationary trap and the trap
translation is initiated, to some timet after the stage begins
to translate. The time dependence of the LHS and RHS of the
IFT (P(VtsGd,0) /P(VtsGd.0) and kexpf−VtsGdglVtsGd.0,
respectively) are, to within experimental error, identical as
predicted by the FT. Data similar to that shown in Fig. 2sad
was first published in Wanget al. as an experimental dem-
onstration of the transient application of the fluctuation theo-
rem using a nearly identical experiment.

In Fig. 2sbd, the steady-state portions of the same 400
trajectories are used to construct the approximate steady-
state dissipation function,Vt

sssGd. Here, the first 10 s of each
trajectory, corresponding to the transient response of the sys-
tem to the step change in stage translation, is discarded and
the remaining trajectory segments are used to construct the
approximate steady-state dissipation function,Vt

sssGd
=skBTd−1e10

t+10dssfopt·voptd. These truncated trajectory seg-
ments are characterized as steady state, as the initial 10 s
of discarded data far exceeds the relaxation time of
the stationary system,t;j /k=120 ms. As shown in Fig.
2sbd, the analogous LHS and RHS of the theorem,
P(Vt

sssGd,0) /P(Vt
sssGd.0) and kexpf−Vt

sssGdglVt
sssGd.0,

agree only at larger time segmentsst.2sd. This is in accord
with the approximate form ofVt

ss for which the FT holds
only in the asymptotic time limit, or in accord with the SSFT
fEq. s27dg.

As we are comparing functions which approach zero at
long times, the equivalence of the LHS and RHS can be

FIG. 2. sColor onlined The integrated FT results from a single
set of 400 linear drag experiments where the argument of the FT
is the determinstically derived dissipation function,
skBTd−1ea

bdssfopt·voptd. The optical trapping constant isk
=0.48 pN/mm, stage velocity −vopt=0.29mm/s, and the 6.3mm
colloidal particle’s position is sampled at 1 kHz over 20 s trajecto-
ries. Insad the dissipation function is accumulated, starting from an
initial resting sequilibrium positiond in accord with the exact form
of VtsGd, that is the trajectories analyzed include transient response
to the initiation of trap translation froma=0 tob= t. The LHS of the
IFT, P(VtsGd,0) /P(VtsGd.0) s–P–d, and RHS of the IFT,
kexpf−VtsGdglVtsGd.0 s–n–d, are plotted against time,t, or the du-
ration of the trajectory. Also shown is a prediction ofP(VtsGd
,0) /P(VtsGd.0) versust sblue lined from stochastic dynamics,
Eq. s28d. Inset is LHS-RHS versust for datas–P–d and from the FT
prediction of unityslined. In sbd the dissipation functionVt

sssGd is
accumulated froma=10 s after the start of stage translation and
accumulated for a furthert seconds tob=10+t. That the system is
at a steady state after 10 s of stage translation is justified by the
value of t=120 ms. The LHS of an integrated-form of the SSFT,
P(Vt

sssGd,0) /P(Vt
sssGd.0) s–P–d, and the RHS of the integrated-

form of the SSFT,kexpf−Vt
sssGdglVt

sssGd.0 s–n–d, are plotted against
the segment time,t. Inset shows LHS-RHS versust against the FT
predictionslined.
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more easily viewed when the experimental data is replotted
as LHS-RHS versust sinserts of Fig. 2d. The FT prediction is
shown as a line in both insets. The FT written for the full
dissipation function,VtsGd, is obeyed at all time while the
FT cast using the approximate steady-state dissipation func-
tion, Vt

sssGd, is obeyed only in the long-time limit. Note that
the asymptotic limit of the SSFT is met whileVt

sssGd is ap-
preciably larger than zero. A very similar result to Fig. 2sbd
was recently shown by Garnier and Ciliberto who found that
the steady-state dissipative power of a resistor/capacitor in
parallel, driven out of equilibrium by small current, follows
the SSFTf10g.

The form of the curves of Fig. 2sad can be determined
from the probability distributions associated with observing
trajectories of durationt having dissipation functionVtsGd,
P(VtsGd). In Appendix A, we derive expressions for
P(VtsGd) as well as the resulting form of the integrated FT,

P„VtsGd , 0…

P„VtsGd . 0…
=

1 − erfX1

2
ÎvstdC

1 + erfX1

2
ÎvstdC , s28d

where

vstd = F2S t

t
− s1 − e−t/tdD

and F2=j2vopt
2 / skkBTd. F is a dimensionless measure that

characterizes the opposing forces acting on a particle local-
ized in the optical trap and is given as the ratio of the lag
distance,juvoptu /k, to the typical particle position within the
trap, given by equipartition asÎkBT/k. For translating trap
experiments with different trap velocities and trap strengths,
F2 is a convenient measure of the relaxation time of the
translating trap. If the trap is stationary, thenF2=0 and the
relaxation time is simplyt=j /k; for translating trap systems,
the larger F2, then trajectories with negative dissipation
functions persist over longer times. The prediction, Eq.s28d,
did not compare favorably with the original experimental
results of Wanget al. f6g, presumably because of unac-
counted forces in that original experiment. However, as Fig.
2sad shows, the experimental results presented here compare
very favorably to this stochastic prediction.

For steady-state trajectories where the approximate dissi-
pation function,Vt

sssGd, is used, the functional form of the
asymptotic approach to the FT can also be constructed ana-
lytically, using the analytic distributionP(Vt

sssGd) derived in
Appendix B. The distribution ofVt

sssGd is Gaussian for allt,
and, in order for Gaussian distributions to obey the FT, the
magnitude of the variance of the distribution must be twice
the mean of the distribution. From distribution functions con-
structed from stochastic dynamics, we show in the Appendix
that the ratio of the variance in the distribution,s

Vt
sssGd

2 , to the

mean of the distribution,kVt
sssGdl, approaches 2 according to

kVt
sssGdl

s
Vt

sssGd
2 = 2 3 H1 −

t

t
F1 − expS−

t

t
DGJ . s29d

Because of strong sensitivity of the variance to the size of the
system, we cannot easily compare Eq.s29d with the limited
number of experimental trajectories. Equationss28d ands29d
further emphasize that the FT does not predict the time scales
over whichVt,0, or in language of Wanget al., over which
“entropy-consuming” trajectories are observable. The gov-
erning equations of motion and the distributions of initial
states determine these time and length scales.

Figure 3 demonstrates the integrated form of the FT using
steady-state segments from a single, circular drag trajectory
to calculate the approximate steady-state dissipation func-
tion, Vt

sssGd. As the duration of the single trajectory is con-
siderably longer than that of the linear drag trajectories, we
are able to constructVt

sssGd for segment times of 75 s, as
compared with only 8–10 s in the linear drag case. Conse-
quently, agreement of the LHS and RHS is shown over a
significantly longer time scale in the circular drag experi-
ment. Figure 3sbd shows the first 10 s of data and the inset
shows the data replotted in the form, LHS-RHS: like the
linear drag results, there is a lack of equivalence of the LHS
and RHS over short segment times, as anticipated from the
SSFT.

In Fig. 4, we have reanalyzed the same experimental data,
using the stochastically derived dissipation function,Vtsr d of
Eq. s25d. This dissipation function is exact; i.e., there are no
approximations made in going from its fundamental defini-
tion, Eq. s19d, to its closed-form expression. The LHS and
RHS of the FT are constructed usingVtsr d and plotted versus
segment time in Fig. 4sad for the linear drag data in Fig. 4sbd
for the circular drag experiment. Both show that the FT holds
over all time, including short times. The decay time of the
fluctuations at steady state is longer for the circular trajecto-
ries si.e., “entropy-consuming” trajectories persist over
longer time scalesd, indicative of Fcircular

2 /Flinear
2 =1.5. The

insets of the figures more clearly show that the FT holds over
all segment times, including short segment times, when the
steady-state dissipation function is expressed exactly, using
stochastic dynamics,Vtsr d. This is in contrast to the deter-
ministically derived steady-state dissipation function,Vt

sssGd,
for which the theorem does not hold over short time seg-
ments.

V. CONCLUSIONS

In this paper, we demonstrate experimentally the applica-
tion of the FT under nonequilibrium steady states forall
times, using a colloidal particle localized in a translating op-
tical trap. Starting from the fundamental definition of the
dissipation function as a measure of trajectory reversibility,
we construct closed-form expressions for the dissipation
function, Vt, using both deterministic or Newtonian dynam-
ics and stochastic or Langevin dynamics, and evaluate each
of the experimental trajectories using these two expressions
for Vt. Under steady-state conditions, it has not proven pos-
sible to construct an exact expression for the dissipation
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function using deterministic dynamics, and it is necessary to
approximate the steady-state dissipation function with its
form in the asymptotic time limit,Vt

sssGd. Consequently,
whenVt

sssGd is used as an argument in the FT, the FT holds

only in the long time limit: indeed the FT written in this
asymptotic time limit is referred to in the literature as a sepa-
rate theorem, the steady-state fluctuation theorem or SSFT.
In contrast, when a closed-form expression of the steady-
state dissipation function is derived exactly using stochastic,
Langevin dynamics, then the FT holds over all time. This
suggests that the asymptotic limit in the SSFT is simply due
to approximations in the argument of the theorem, and that
when the argument of the theorem is derived exactly, the FT
is operative over all time. However, it is important to recog-
nize that it may not always be possible to construct exact,
closed-form expressions for steady-state dissipation func-
tions using stochastic dynamics, and in such cases approxi-
mate dissipation functions are necessary.

FIG. 3. sColor onlined The integrated FT results from a single
circular drag trajectory using the approximate, steady-state dissipa-
tion functionVt

sssGd=skBTd−1ea
a+tdssfopt·voptd, wherea takes on val-

ues of multiple values of 75 s, plotted for time rangessad 0ø t
ø75 s and sbd 0ø tø10 s. The optical trapping constant isk
=0.12 pN/mm, the stage is circularly rotating with a diameter of
14.6mm at 4 mHz, corresponding to a tangential velocity of
0.18mm/s, and the 6.3mm colloidal particle’s position is sampled
at 1 kHz over the single trajectory. As the ratio of the dimensionless
measureF2 of the circular and linear translating trap experiments is
Fcircular

2 /Flinear
2 =1.5, “entropy-consuming” trajectories persist over

a longer time scale in the circularly translated experiments with
Vt

sssGd,0 for t up to 50 s. The LHS of an integrated-form of the
SSFT,P(Vt

sssGd,0) /P(Vt
sssGd.0) s–P–d, and the RHS of the in-

tegrated form of the SSFT,kexpf−Vt
sssGdglVt

sssGd.0 s2∆2d, are plot-
ted against the segment time,t. The inset shows LHS-RHS versust
against the FT predictionslined, further demonstrating the lack of
equivalence at short times, due to the approximate dissipation
function.

FIG. 4. sColor onlined The integrated FT results fromsad 400
linear drag trajectories andsbd a single circular drag trajectory, us-
ing an exact expression for the steady-state dissipation function,
derived from stochastic dynamics,Vtsr d. The experimental details
are given in the captions of Figs. 2 and 3. The LHS of an integrated-
form of the FT,P(Vtsr d,0) /P(Vtsr d.0) s–P–d, and the RHS of
the integrated-form of the FT,kexpf−Vtsr dglVtsr d.0 s–n–d, are plot-
ted against the segment time,t. The inset shows LHS-RHS versust
against the FT predictionslined.
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APPENDIX A: DERIVATION OF A CLOSED-FORM
EXPRESSION FOR P„Vt,0… /P„Vt.0… FOR TRANSIENT

TRAJECTORIES OF A PARTICLE IN A
TRANSLATING TRAP

We are interested in deriving a closed-form expression for
PsVt,0d /PsVt.0d, whereVt is taken to be the determin-
istically derived dissipation function

Vt ; VtsGd =
1

kBT
E

0

t

dssfopt ·voptd. sA1d

fIn this appendix, we have shortened notation, dropping the
argument of the dissipation function such thatVtsGd is writ-
ten asVt. All trajectories are described deterministically.g
The form of the LHS or RHS of the FT depends upon the
distribution of trajectories with given values ofVt. In this
appendix we derive an expression for the distributionPsVtd,
and hence an expression forPsVt,0d /PsVt.0d, using sto-
chastic dynamics. It is important to recognize that the dissi-
pation function is derived under deterministic dynamics;
however, the functional form of the distribution of trajecto-
ries is derived using stochastic dynamics. For simplicity, we
cast our derivation in one dimension; an extension to higher
dimensions is straightforward.

From the distribution of particle positions, we can con-
struct a distribution ofVt at any given time,t. Noting that
fopt+ f rand+ fdrag=0, i.e., fopt=jdr /dt−gstd, and using this in
the definition and integrating gives

Vt =
− jv
kBT

hdstd − frstd − rs0dgj, sA2d

where rs0d is the initial position of the particle anddstd is
dstd=j−1e0

t dsgssd. Physically the two terms inVt can be
identified as follows: thedstd contribution arises from the
random forces alone and the second term, proportional to
rstd−rs0d, represents the contribution from the integrated
drag force. It is important to note that these two terms are not
independent, since the displacement at any time depends
upon the history of the random forces. We can reexpress this
in terms of the moving coordinate systemx using r =x+vt
−jvopt/k and r0=x0−jvopt/k. The dissipation is then

Vt = −
jv
kBT

fdstd − xstd − voptt + x0g. sA3d

We already know the distribution ofx0 sit is an equilibrium,
Boltzmann distributiond. What we require is the distribution
of wstd;xstd−dstd, since if we know this we can then con-
struct the distribution ofVt and hence everything about the
problem. We know how to solve the stochastic differential
equation forxstd: its solution is

xstd = x0 exps− t/td + j−1E
0

t

dt8 expf− st − t8d/tggst8d.

sA4d

Hence the solution forwstd fwhich is justxstd minus the sum
of the random displacementsg is

wstd = x0 exps− t/td + j−1E
0

t

dt8hexpf− st − t8d/tg − 1jgst8d.

sA5d

Now we seew is simply the sum of a number of terms, all of
which are Gaussian. Hencew itself has a Gaussian distribu-
tion:

Gwsw,x0,td = f2pBstdg−1/2 exph− fw − Astdg2/f2Bstdgj.

sA6d

HereGwsw,x0,td is the probability of findingwstd given that
x=x0 at time t=0. To determine the meanAstd is simple:
Astd=kwstdl=x0e

−t/t where thek l is an ensemble average.
Bstd may be determined as follows:

Bstd = kfwstd − Astdg2l

= j−2E
0

t

dt1E
0

t

dt2fe−st−t1d/t − 1g

3fe−st−t2d/t − 1gkgst1dgst2dl. sA7d

Noting that the noise correlation is a delta function allows
one to readily integrate this so that

Bstd =
kBT

j
s2t + 4te−t/t − te−2t/t − 3td. sA8d

The initial distribution ofx0 is the Boltzmann distribution
and is

Px0
sx0d =Î k

2pkBT
expF−

k

2kBT
Sx0 −

jvopt

k
D2G . sA9d

This gives us directly the probability distribution for the dis-
sipation, sincew=kBTVt /jvopt+x0−voptt. Integrating overx0
yields

PVt
sVtd =

kBT

jvopt
E

−`

`

dx0GwS kBTVt

jv − opt
+ x0 − voptt,x0,tDPx0

sx0d.

sA10d

Introducing the function

vstd = F2S t

t
− s1 − e−t/tdD sA11d

allows us to write the distribution function for the dissipation
as
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PsVtd =
1

2
fpvstdg−1/2 expS−

1

4vstd
fVt − vstdg2D .

sA12d

From this the FT is easily verified,PsVtd /Ps−Vtd=expsVtd.
The probabilities of positive and negative dissipation paths
are

P± = 1
2 ± 1

2erff 1
2
Îvstdg sA13d

From these the IFT is easily verified.
Note thatPsVtd is Gaussian with a meansand peakd vstd

and width,Îvstd. The peak always moves towards positive
Vt. At long times it does this linearly in time at a speed
jvopt

2 / skBTd. This speed is independent of the well strengthk,
and has a simple physical interpretation—it is just the dissi-
pation production assuming the particles are dragged along
at speedvopt. At short times the dissipation peak moves more
slowly as 1

2sjvopt
2 /kkBTdst /td2 scorresponding to diffusive

motiond. At long times we have vstd=sjvopt
2 /kBTdt

−sj2vopt
2 /kkBTd where the first term arises from the dissipa-

tion production in steady statesalluded to aboved and the
second term is due to the initial transient.

APPENDIX B: DERIVATION OF THE RATIO OF THE
MEAN TO VARIANCE OF THE DISTRIBUTION P„Vt

ss
…

Our aim is to derive an expression forPsVt
ssd whereVt

ss is
the deterministically derived steady-state dissipation function

Vt
ss; Vt

sssGd =
1

kBT
E

0

t

dssfopt ·voptd, sB1d

where the time integral is taken over steady-state conditions.
fIn this appendix, we have shortened notation, dropping the
argument of the dissipation function such thatVt

sssGd is writ-
ten asVt

ss. All trajectories are described deterministically.g

That is, the optical trap has been moving for some time and
the particle is located at its steady-state position for the entire
observation time,t. As the transientVt satisfies the FT,Vt

ss

satisfies the FT only in the long time limit.
The derivation of the distributionPsVt

ssd is similar to that
of PsVtd given in Appendix A. The only difference is that the
distribution of initial positions is no longer the equilibrium
distribution of positions in a stationary trap.fEq. sA9dg. In-
stead, the initial distribution is that of a particle in equilib-
rium in the moving coordinate frame,

Px0
sx0d =Î k

2pkBT
expS−

kx0
2

2kBT
D . sB2d

Solving Eq. sA10d using the above equation forPx0
sx0d

yields a Gaussian distribution ofVt
ss:

PVt
sssVt

ssd =
1

Î2ps
Vt

ss
2

expS−
sVt

ss− V̄t
ssd2

2s
Vt

ss
2 D , sB3d

where the mean value of the distribution,V̄t
ss, is

V̄t
ss=

k

kBT
svopttd2S t

t
D sB4d

and the variance in the distribution,s
Vt

ss
2 is

s
Vt

ss
2 =

2k

kBT
svopttd2S t

t
− 1 + exps− t/tdD . sB5d

For Gaussian distributions to obey the FT, the variance of the
distribution must be exactly twice the mean. Here, for the
distribution ofVt

ss, the ratio of the variance to mean is

V2std
kVt

ssl
= 2 3 S1 −

t

t
f1 − exps− t/tdgD , sB6d

so that only in the limit of thet@t will the FT be valid, in
accord with what is known about the SSFT.
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Vtsr d = S kvoptt

kBTf1 − exps− t/tdg
−

jvopt

kBT
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