13 research outputs found
Use of glass transition temperature for stabilization of board's cracks of Eucalyptus grandis
The Eucalyptus grandis logs temperatures were determined and correlated with the board's cracks during steaming. Thermocouples were inserted in the logs center, registering their temperatures during steaming at 90"C. The logs were sawed and the board's cracks measured. It was concluded that: (1) the logistic S-shaped curve explains the logs temperature variation; (2) the logs with diameter of 20 to <25, 25 to <30 and 30 to <35 cm presented, respectively, 84.2"C, 73.1"C and 45.8"C in the steaming; and (3) the cracks lengths significantly decreased in logs that reached the glass transition temperature.<br>As temperaturas em toras de Eucalyptus grandis, durante a vaporização, foram determinadas e correlacionadas com as rachaduras das tábuas. Nos centros das toras foram inseridos termopares e registradas suas temperaturas durante a vaporização à 90"C. As toras foram desdobradas e as rachaduras das tábuas mensuradas. Concluiu-se que: (1) o modelo estatístico sigmoidal logístico explica a variação da temperatura nas toras; (2) as toras com 20 a <25, 25 a <30 e 30 a <35 cm de diâmetro apresentaram, respectivamente, 84,2"C, 73,1"C e 45,8"C ao final da vaporização; e (3) as rachaduras foramsignificativamente menores nas toras que atingiram a temperatura de transição vítrea
Permeability measuremens of brazilian Eucalyptus
The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative