22 research outputs found

    Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age.

    Get PDF
    Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110β, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation

    Impact of periconceptional and preimplantation undernutrition on factors regulating myogenesis and protein synthesis in muscle of singleton and twin fetal sheep.

    Get PDF
    In this study, we determined the effect of maternal undernutrition in the periconceptional (PCUN: ~80 days before to 6 days after conception) and preimplantation (PIUN: 0-6 days after conception) periods on the mRNA and protein abundance of key factors regulating myogenesis and protein synthesis, and on the relationship between the abundance of these factors and specific microRNA expression in the quadriceps muscle of singleton and twin fetal sheep at 135-138 days of gestation. PCUN and PIUN resulted in a decrease in the protein abundance of MYF5, a factor which determines the myogenic lineage, in singletons and twins. Interestingly, there was a concomitant increase in insulin-like growth factor-1 mRNA expression, a decrease in the protein abundance of the myogenic inhibitor, myostatin (MSTN), and an increase in the mRNA and protein abundance of the MSTN inhibitor, follistatin (FST), in the PCUN and PIUN groups in both singletons and twins. These promyogenic changes may compensate for the decrease in MYF5 protein abundance evoked by early embryonic undernutrition. PCUN and PIUN also increased the protein abundance of phosphorylated eukaryotic translation initiation factor binding protein 1 (EIF4EBP1; T70 and S65) in fetal muscle in singletons and twins. There was a significant inverse relationship between the expression of miR-30a-5p, miR-30d-5p, miR-27b-3p, miR106b-5p, and miR-376b and the protein abundance of mechanistic target of rapamycin (MTOR), FST, or MYF5 in singletons or twins. In particular, the expression of miR-30a-5p was increased and MYF5 protein abundance was decreased, in PCUN and PIUN twins supporting the conclusion that the impact of PCUN and PIUN is predominantly on the embryo

    Periconceptional undernutrition and being a twin each alter kidney development in the sheep fetus during early gestation

    No full text
    Adaptive growth responses of the embryo and fetus to nutritional restraint are important in ensuring early survival, but they are implicated in the programming of hypertension. It has been demonstrated that kidney growth and nephrogenesis are each regulated by intrarenal factors, including the insulin-like growth factors, glucocorticoids, and the renin-angiotensin system. Therefore, we have investigated the impact of periconceptional undernutrition (PCUN; from ∼6 wk before to 7 days after conception) in singleton (control, n = 18; PCUN, n = 16) and twin pregnancies (control, n = 6; PCUN, n = 5) on the renal mRNA expression of 11β- hydroxysteroid dehydrogensase type 1 and type 2 (11β-HSD-1 and -2), the glucocorticoid (GR), and mineralocorticoid receptors, angiotensinogen, angiotensin receptor type 1 (AT1R) and 2 (AT2R), IGF-1 and IGF-2, and IGF1R and IGF2R at ∼55 days gestation. There was no effect of PCUN or fetal number on fetal weight on relative kidney weight at approximately day 55 of gestation. There was an inverse relationship between the relative weight of the fetal kidney at approximately day 55 and maternal weight loss during the periconceptional period in fetuses exposed to PCUN. Exposure to PCUN resulted in a higher expression of IGF1 in the fetal kidney in singleton and twin pregnancies. Being a twin resulted in higher intrarenal expression of IGF-1 and IGF-2, GR, angiotensinogen, AT1R, and AT2R mRNA at 55 days gestation. Renal 11β-HSD-2 mRNA expression was higher in PCUN singletons, but not PCUN twins, compared with controls. Thus, there may be an adaptive response in the kidney to the early environment of a twin pregnancy, which precedes the fetal growth restriction that occurs later in pregnancy. The kidney of the twin fetus exposed to periconceptional undernutrition may also be less protected from the consequences of glucocorticoid exposure.

    Impact of maternal periconceptional overnutrition on fat mass and expression of adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb

    No full text
    Women entering pregnancy with a high body weight and fat mass have babies who are at increased risk of becoming overweight or obese in later life. We investigated whether maternal overnutrition in the periconceptional period results in an increased fat mass and expression of adipogenic and lipogenic genes in offspring and whether dietary restriction can reverse these changes. Nonpregnant donor ewes (n = 23) were assigned to one of four groups: control-control fed at 100% maintenance energy requirements (MER) for at least 5 months, control-restricted fed 100% MER for 4 months and 70% MER for 1 month, high-high (HH) fed ad libitum (170–190% MER) for 5 months, or high-restricted (HR) fed ad libitum for 4 months and 70% MER for 1 month. Single embryos were transferred to nonobese recipient ewes, and lamb fat depots were weighed at 4 months. Peroxisome proliferator-activated receptor-{gamma}, glyceraldehyde-3-phosphate dehydrogenase, lipoprotein lipase, leptin, and adiponectin mRNA expression was measured in the lamb fat depots. Total fat mass was higher in female lambs in the HH but not HR group than controls. There was a relationship between donor ewe weight and total fat mass and G3PDH mRNA expression in perirenal fat in female lambs. There was no effect of periconceptional nutritional treatment on peroxisome proliferator-activated receptor-{gamma}, glyceraldehyde-3-phosphate dehydrogenase, lipoprotein lipase, leptin, and adiponectin mRNA expression in any fat depot. Thus, exposure to maternal overnutrition in the periconceptional period alone results in an increased body fat mass in the offspring and that a short period of dietary restriction can reverse this effect.

    Maternal dietary restriction during the periconceptional period in normal-weight or obese ewes results in adrenocortical hypertrophy, an up-regulation of the JAK/STAT and down-regulation of the IGF1R signaling pathways in the adrenal of the postnatal lamb

    No full text
    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth.

    The Periconceptional Environment and Cardiovascular Disease: Does In Vitro Embryo Culture and Transfer Influence Cardiovascular Development and Health?

    No full text
    Assisted Reproductive Technologies (ARTs) have revolutionised reproductive medicine; however, reports assessing the effects of ARTs have raised concerns about the immediate and long-term health outcomes of the children conceived through ARTs. ARTs include manipulations during the periconceptional period, which coincides with an environmentally sensitive period of gamete/embryo development and as such may alter cardiovascular development and health of the offspring in postnatal life. In order to identify the association between ARTs and cardiovascular health outcomes, it is important to understand the events that occur during the periconceptional period and how they are affected by procedures involved in ARTs. This review will highlight the emerging evidence implicating adverse cardiovascular outcomes before and after birth in offspring conceived through ARTs in both human and animal studies. In addition, it will identify the potential underlying causes and molecular mechanisms responsible for the congenital and adult cardiovascular dysfunctions in offspring whom were conceived through ARTs

    Periconceptional undernutrition programs changes in insulin-signaling molecules and microRNAs in skeletal muscle in singleton and twin fetal sheep

    No full text
    Maternal undernutrition around the time of conception is associated with an increased risk of insulin resistance in adulthood. We determined the effect of maternal undernutrition in the periconceptional period (PCUN, i.e., 60 days prior to 6 days after conception) and the preimplantation period (PIUN, i.e., 0–6 days after conception) on mRNA expression and protein abundance of key insulin-signaling molecules as well as the global microRNA expression in quadriceps muscle of singleton and twin fetal sheep in late gestation. In singleton fetuses, exposure to PCUN resulted in lower protein abundance of PIK3CB (P < 0.01), PRKCZ (P < 0.05), and pPRKCZ (Thr410) (P < 0.05) in skeletal muscle compared to controls. In PIUN singletons, there was a higher protein abundance of IRS1 (P < 0.05), PDPK1 (P < 0.05), and SLC2A4 (P < 0.05) compared to controls. In twins, PCUN resulted in higher protein abundance of IRS1 (P < 0.05), AKT2 (P < 0.05), PDPK1 (P < 0.05), and PRKCZ (P < 0.001), while PIUN also resulted in higher protein abundance of IRS1 (P < 0.05), PRKCZ (P < 0.001), and SLC2A4 (P < 0.05) in fetal muscle compared to controls. There were specific patterns of the types and direction of changes in the expression of 22 microRNAs in skeletal muscle after exposure to PCUN or PIUN and clear differences in these patterns between singleton and twin pregnancies. These findings provide evidence that maternal undernutrition around the time of conception induces changes in the expression of microRNAs, which may play a role in altering the abundance of the key insulin-signaling molecules in skeletal muscle and in the association between PCUN undernutrition and insulin resistance in adult life.Shervi Lie, Janna L. Morrison, Olivia Williams-Wyss, Catherine M. Suter, David T. Humphreys, Susan E. Ozanne, Song Zhang, Severence M. MacLaughlin, David O. Kleemann, Simon K. Walker, Claire T. Roberts, and I. Caroline McMille
    corecore