7 research outputs found

    Scanning Electron Microscopy Approach for Evaluation of Hair Dyed with Lawsonia inermis Powder: in vitro Study

    Get PDF
    SUMMARY: During aging, usually graying of the hair occurs as a result of oxidative stress. Driven by social acceptance and self-perception of the exterior appearance, both men and women rely on hair dyeing products, in order to mask the graying hair. At the same time, a frequent use of synthetic products and treatment can damage the hair shaft; for this reason, this study aimed to evaluate the morphological effect of the herbal dye derived from Lawsonia inermis (henna), on hair. Dyed hairs were evaluated by means of SEM. Subsequently, they were compared, qualitatively and quantitatively, with undyed hairs. Results showed a positive impact on the cuticula pattern and on the diameters of the examined samples, after henna application. Different results, about the degree and the type of morphological changes occurring on pigmented hairs, may depend on the phenotype and on the health condition of hair, before dye treatment. RESUMEN: Durante el envejecimiento, generalmente se produce el envejecimiento del cabello como resultado del estrés oxidativo. Motivados por la aceptación social y la autopercepción de la apariencia, tanto hombres como mujeres confían en productos para teñir el cabello para enmascarar las canas. Al mismo tiempo, el uso frecuente de productos y tratamientos sintéticos puede dañar el tallo del cabello. Por esta razón, este estudio tuvo como objetivo evaluar el efecto morfológico del tinte derivado de Lawsonia inermis (henna) en el cabello. Los cabellos teñidos se evaluaron mediante SEM. Posteriormente, se compararon, cualitativa y cuantitativamente, con cabellos sin teñir. Los resultados mostraron un impacto positivo en el patrón de la cutícula y en los diámetros de las muestras examinadas, después de la aplicación de henna. Los diferentes resultados, sobre el grado y el tipo de cambios morfológicos que ocurren en los cabellos pigmentados, pueden depender del fenotipo y del estado de salud del cabello, antes del tratamiento con tinte

    Morphology and viability of human spermatozoa vitrified with a new, cryoprotectant-free, artificial seminal fluid

    Get PDF
    Cryopreservation is a process finalized to store tissues and cells at a very low temperature. The most common freezing protocols used for gamete preservation in Assisted Reproductive Technologies are slow freezing and vitrification (1). Vitrification combines ultrarapid cooling with high concentrations of cryoprotectants; it avoids, better than slow freezing, the formation of ice crystals. It has been demonstrated, however, that cryoprotectant addition may significantly reduce cell viability (2). This study was aimed to design a new, cryoprotectant-free, medium similar to normal human seminal fluid (SF) formulation (artificial seminal fluid; ASF), and to compare the cryoprotective potential of this medium with SF and Human tubal fluid (HTF) medium. Thirty normal ejaculates were processed with swim-up technique and sperm suspensions were divided in four groups: fresh (controls); vitrified in HTF (Vit HTF); vitrified in patients’ SF (Vit SF); and vitrified in ASF (Vit ASF). To identify the effects of the different media we assessed sperm parameters of motility, viability and morphology after warming. Spermatozoa ultrastructure was also evaluated by scanning and transmission electron microscopy (SEM and TEM). The results showed that sperm motility, viability and normal morphology were significantly higher in Vit ASF than in Vit HTF. The same parameters were better in Vit ASF than in Vit SF, but only viability differed significantly. Deep cytoplasmic invaginations and folded tails were commonly observed by SEM in all vitrified sperms, but this alterations were more evident in Vit HTF and Vit SF than in Vit ASF. By TEM, acrosome damage, plasma membrane loss, chromatin vacuolation, disruption of mitochondria and adherence of several tail sections together were observed in all vitrified groups; the latter phenomenon, however, was more evident in Vit HTF and Vit SF than in Vit ASF. In conclusion, vitrification of human spermatozoa with ASF seems more effective in preserving sperm quality than Vit SF and, particularly, Vit HTF

    Pre-Implantation Mouse Embryos Cultured In Vitro under Different Oxygen Concentrations Show Altered Ultrastructures

    No full text
    Assisted Reproductive Technologies routinely utilize different culture media and oxygen (O2) concentrations to culture human embryos. Overall, embryos cultured under physiological O2 tension (5%) have improved development compared to embryos cultured under atmospheric O2 conditions (20%). The mechanisms responsible for this remain unclear. This study aimed to evaluate the effect of physiologic (5%) or atmospheric O2 (20%) tension on the microscopic ultrastructure of pre-implantation mouse embryos using Transmission Electron Microscopy (TEM). Embryos flushed out of the uterus after natural mating were used as the control. For use as the control, 2-cells, 4-cells, morulae, and blastocysts were flushed out of the uterus after natural fertilization. In vitro fertilization (IVF) was performed using potassium simplex optimized medium (KSOM) under different O2 tensions (5% and 20%) until the blastocyst stage. After collection, embryos were subjected to the standard preparative for light microscopy (LM) and TEM. We found that culture in vitro under 5% and 20% O2 results in an increase of vacuolated shaped mitochondria, cytoplasmic vacuolization and presence of multi-vesicular bodies at every embryonic stage. In addition, blastocysts generated by IVF under 5% and 20% O2 showed a lower content of heterochromatin, an interruption of the trophectodermal and inner cell mass cell membranes, an increased density of residual bodies, and high levels of glycogen granules in the cytoplasm. In conclusion, this study suggests that in vitro culture, particularly under atmospheric O2 tension, causes stage-specific changes in preimplantation embryo ultrastructure. In addition, atmospheric (20%) O2 is associated with increased alterations in embryonic ultrastructure; these changes may explain the reduced embryonic development of embryos cultured with 20% O2

    Ultrastructural Evaluation of the Human Oocyte at the Germinal Vesicle Stage during the Application of Assisted Reproductive Technologies

    No full text
    After its discovery in 1825 by the physiologist J.E. Purkinje, the human germinal vesicle (GV) attracted the interest of scientists. Discarded after laparotomy or laparoscopic ovum pick up from the pool of retrieved mature oocytes, the leftover GV was mainly used for research purposes. After the discovery of Assisted Reproductive Technologies (ARTs) such as in vitro maturation (IVM), in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI), its developing potential was explored, and recognized as an important source of germ cells, especially in the case of scarce availability of mature oocytes for pathological/clinical conditions or in the case of previous recurrent implantation failure. We here review the ultrastructural data available on GV-stage human oocytes and their application to ARTs

    Circulating Tumor DNA in the Management of Early-Stage Breast Cancer

    No full text
    Liquid biopsies refer to the isolation and analysis of tumor-derived biological material from body fluids, most commonly blood, in order to provide clinically valuable information for the management of cancer patients. Their non-invasive nature allows to overcome the limitations of tissue biopsy and complement the latter in guiding therapeutic decision-making. In the past years, several studies have demonstrated that circulating tumor DNA (ctDNA) detection can be used in the clinical setting to improve patient prognosis and monitor therapy response, especially in metastatic cancers. With the advent of significant technological advances in assay development, ctDNA can now be accurately and reliably identified in early-stage cancers despite its low levels in the bloodstream. In this review, we discuss the most important studies that highlight the potential clinical utility of ctDNA in early-stage breast cancer focusing on early diagnosis, detection of minimal residual disease and prediction of metastatic relapse. We also offer a concise description of the most sensitive techniques that are deemed appropriate for ctDNA detection in early-stage cancer and we examine their advantages and disadvantages, as they have been employed in various studies. Finally, we discuss future perspectives on how ctDNA could be better integrated into the everyday oncology practice
    corecore