49 research outputs found

    Attacking the Knudsen-Preneel Compression Functions

    Full text link
    Abstract. Knudsen and Preneel (Asiacrypt’96 and Crypto’97) introduced a hash function design in which a linear error-correcting code is used to build a wide-pipe compression function from underlying blockciphers operating in Davies-Meyer mode. Their main design goal was to deliver compression functions with collision resistance up to, and even beyond, the block size of the underlying blockciphers. In this paper, we (re)analyse the preimage resistance of the Knudsen-Preneel compression functions in the setting of public random func-tions. We give a new preimage attack that is based on two observations. First, by using the right kind of queries it is possible to mount a non-adaptive preimage attack that is optimal in terms of query complexity. Second, by exploiting the dual code the subsequent problem of reconstructing a preimage from the queries can be rephrased as a problem related to the generalized birthday problem. As a consequence, the time complexity of our attack is intimately tied to the minimum distance of the dual code. Our new attack consistently beats the one given by Knudsen and Preneel (in one case our preimage attack even beats their collision attack) and demonstrates that the gap between their claimed collision resistance and the actual preimage resistance is surprisingly small. Moreover, our new attack falsifies their (conjectured) preimage resistance security bound and shows that intuitive bounds based on the number of ‘active ’ components can be treacherous. Complementing our attack is a formal analysis of the query complexity (both lower and upper bounds) of preimage-finding attacks. This analysis shows that for many concrete codes the time complexity of our attack is optimal.

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe

    Adaptive Proofs Have Straightline Extractors (in the Random Oracle Model)

    Get PDF
    Abstract. The concept of adaptive security for proofs of knowledge was recently studied by Bernhard et al. They formalised adaptive security in the ROM and showed that the non-interactive version of the Schnorr protocol obtained using the Fiat-Shamir transformation is not adaptively secure unless the one-more discrete logarithm problem is easy. Their only construction for adaptively secure protocols used the Fischlin transformation [3] which yields protocols with straight-line extractors. In this paper we provide two further key insights. Our main result shows that any adaptively secure protocol must have a straight-line extractor: even the most clever rewinding strategies cannot offer any benefits against adaptive provers. Then, we show that any Fiat-Shamir transformed SIGMA-protocol is not adaptively secure unless a related problem which we call the SIGMA-one-wayness problem is easy. This assumption concerns not just Schnorr but applies to a whole class of SIGMA-protocols including e.g. Chaum-Pedersen and representation proofs. We also prove that SIGMA-one-wayness is hard in the generic group model. Taken together, these results suggest that Fiat-Shamir transformed SIGMA-protocols should not be used in settings where adaptive security is important

    Towards Non-Black-Box Separations of Public Key Encryption and One Way Function

    Get PDF
    Separating public key encryption from one way functions is one of the fundamental goals of complexity-based cryptography. Beginning with the seminal work of Impagliazzo and Rudich (STOC, 1989), a sequence of works have ruled out certain classes of reductions from public key encryption (PKE)---or even key agreement---to one way function. Unfortunately, known results---so called black-box separations---do not apply to settings where the construction and/or reduction are allowed to directly access the code, or circuit, of the one way function. In this work, we present a meaningful, non-black-box separation between public key encryption (PKE) and one way function. Specifically, we introduce the notion of BBN−\textsf{BBN}^- reductions (similar to the BBNp\textsf{BBN}\text{p} reductions of Baecher et al. (ASIACRYPT, 2013)), in which the construction EE accesses the underlying primitive in a black-box way, but wherein the universal reduction RR receives the efficient code/circuit of the underlying primitive as input and is allowed oracle access to the adversary Adv\textsf{Adv}. We additionally require that the number of oracle queries made to Adv\textsf{Adv}, and the success probability of RR are independent of the run-time/circuit size of the underlying primitive. We prove that there is no non-adaptive, BBN−\textsf{BBN}^- reduction from PKE to one way function, under the assumption that certain types of strong one way functions exist. Specifically, we assume that there exists a regular one way function ff such that there is no Arthur-Merlin protocol proving that ``z∉Range(f)z \not\in \textsf{Range}(f)\u27\u27, where soundness holds with high probability over ``no instances,\u27\u27 y∼f(Un)y \sim f(U_n), and Arthur may receive polynomial-sized, non-uniform advice. This assumption is related to the average-case analogue of the widely believed assumption coNP⊈NP/poly\textbf{coNP} \not\subseteq \textbf{NP}/\textbf{poly}

    Taming the many EdDSAs

    Get PDF
    This paper analyses security of concrete instantiations of EdDSA by identifying exploitable inconsistencies between standardization recommendations and Ed25519 implementations. We mainly focus on current ambiguity regarding signature verification equations, binding and malleability guarantees, and incompatibilities between randomized batch and single verification. We give a formulation of Ed25519 signature scheme that achieves the highest level of security, explaining how each step of the algorithm links with the formal security properties. We develop optimizations to allow for more efficient secure implementations. Finally, we designed a set of edge-case test-vectors and run them by some of the most popular Ed25519 libraries. The results allowed to understand the security level of those implementations and showed that most libraries do not comply with the latest standardization recommendations. The methodology allows to test compatibility of different Ed25519 implementations which is of practical importance for consensus-driven applications

    Limitations of the Meta-reduction Technique: The Case of Schnorr Signatures

    Get PDF
    We revisit the security of Fiat-Shamir signatures in the non-programmable random oracle model. The well-known proof by Pointcheval and Stern for such signature schemes (Journal of Cryptology, 2000) relies on the ability to re-program the random oracle, and it has been unknown if this property is inherent. Pailler and Vergnaud (Asiacrypt 2005) gave some first evidence of the hardness by showing via meta-reduction techniques that algebraic reductions cannot succeed in reducing key-only attacks against unforgeability to the discrete-log assumptions. We also use meta-reductions to show that the security of Schnorr signatures cannot be proven equivalent to the discrete logarithm problem without programming the random oracle. Our result also holds under the one-more discrete logarithm assumption but applies to a large class of reductions, we call *single-instance* reductions, subsuming those used in previous proofs of security in the (programmable) random oracle model. In contrast to algebraic reductions, our class allows arbitrary operations, but can only invoke a single resettable adversary instance, making our class incomparable to algebraic reductions. Our main result, however, is about meta-reductions and the question if this technique can be used to further strengthen the separations above. Our answer is negative. We present, to the best of our knowledge for the first time, limitations of the meta-reduction technique in the sense that finding a meta-reduction for general reductions is most likely infeasible. In fact, we prove that finding a meta-reduction against a potential reduction is equivalent to finding a ``meta-meta-reduction\u27\u27 against the strong existential unforgeability of the signature scheme. This means that the existence of a meta-reduction implies that the scheme must be insecure (against a slightly stronger attack) in the first place

    Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic Group Model

    Get PDF
    The Schnorr blind signing protocol allows blind issuing of Schnorr signatures, one of the most widely used signatures. Despite its practical relevance, its security analysis is unsatisfactory. The only known security proof is rather informal and in the combination of the generic group model (GGM) and the random oracle model (ROM) assuming that the ``ROS problem\u27\u27 is hard. The situation is similar for (Schnorr-)signed ElGamal encryption, a simple CCA2-secure variant of ElGamal. We analyze the security of these schemes in the algebraic group model (AGM), an idealized model closer to the standard model than the GGM. We first prove tight security of Schnorr signatures from the discrete logarithm assumption (DL) in the AGM+ROM. We then give a rigorous proof for blind Schnorr signatures in the AGM+ROM assuming hardness of the one-more discrete logarithm problem and ROS. As ROS can be solved in sub-exponential time using Wagner\u27s algorithm, we propose a simple modification of the signing protocol, which leaves the signatures unchanged. It is therefore compatible with systems that already use Schnorr signatures, such as blockchain protocols. We show that the security of our modified scheme relies on the hardness of a problem related to ROS that appears much harder. Finally, we give tight reductions, again in the AGM+ROM, of the CCA2 security of signed ElGamal encryption to DDH and signed hashed ElGamal key encapsulation to DL

    Upper and Lower Bounds for Continuous Non-Malleable Codes

    Get PDF
    Recently, Faust et al. (TCC\u2714) introduced the notion of continuous non-malleable codes (CNMC), which provides stronger security guarantees than standard non-malleable codes, by allowing an adversary to tamper with the codeword in continuous way instead of one-time tampering. They also showed that CNMC with information theoretic security cannot be constructed in 2-split-state tampering model, and presented a construction of the same in CRS (common reference string) model using collision-resistant hash functions and non-interactive zero-knowledge proofs. In this work, we ask if it is possible to construct CNMC from weaker assumptions. We answer this question by presenting lower as well as upper bounds. Specifically, we show that it is impossible to construct 2-split-state CNMC, with no CRS, for one-bit messages from any falsifiable assumption, thus establishing the lower bound. We additionally provide an upper bound by constructing 2-split-state CNMC for one-bit messages, assuming only the existence of a family of injective one way functions. We also present a construction of 4-split-state CNMC for multi-bit messages in CRS model from the same assumptions. Additionally, we present definitions of the following new primitives: (1) One-to-one commitments, and (2) Continuous Non-Malleable Randomness Encoders, which may be of independent interest

    Tightly-Secure Signatures from Five-Move Identification Protocols

    Get PDF
    We carry out a concrete security analysis of signature schemes obtained from five-move identification protocols via the Fiat-Shamir transform. Concretely, we obtain tightly-secure signatures based on the computational Diffie-Hellman (CDH), the short-exponent CDH, and the Factoring (FAC) assumptions. All our signature schemes have tight reductions to search problems, which is in stark contrast to all known signature schemes obtained from the classical Fiat-Shamir transform (based on three-move identification protocols), which either have a non-tight reduction to a search problem, or a tight reduction to a (potentially) stronger decisional problem. Surprisingly, our CDH-based scheme turns out to be (a slight simplification of) the Chevallier-Mames signature scheme (CRYPTO 05), thereby providing a theoretical explanation of its tight security proof via five-move identification protocols
    corecore