4 research outputs found

    Monte Carlo simulation-based defect ratio estimation approach for a chemical materials stockpile reliability program

    Get PDF
    A chemical material stockpile reliability program (CSRP) that determines the usability, safety, reliability, and performance of chemical equipment and materials is developed to determine the storage or disposal of chemical material stockpile (Storage Chemical Equipment and Material Reliability Evaluation Instruction, 2019). However, current inspection for current CSRP depend on test and evaluation of criteria for level of importance, and so the number of samples and acceptance quality limit (AQL) are presented based on the lot size. All the processes are conducted under KS Q ISO 2859-1, and the defect rate of the entire lot of CSRP items is generally assumed to be a distribution that is similar to a binomial distribution. However, the pass-fail test for CSRP items is based on approximately 10 test items, and the factors that cause defects in these items are also heterogeneous. We propose a new methodology for estimating the defect rates of CSRP items based on Monte Carlo simulations, which are widely used in various academic fields. In addition, we show the future applicability of the methodology by applying it to the K1 gas mask case and revealing the results of the defect rate estimation. We also present future work, including the need for a standard sample of CSRP items

    Monte Carlo simulation-based defect ratio estimation approach for a chemical materials stockpile reliability program

    Get PDF
    A chemical material stockpile reliability program (CSRP) that determines the usability, safety, reliability, and performance of chemical equipment and materials is developed to determine the storage or disposal of chemical material stockpile (Storage Chemical Equipment and Material Reliability Evaluation Instruction, 2019). However, current inspection for current CSRP depend on test and evaluation of criteria for level of importance, and so the number of samples and acceptance quality limit (AQL) are presented based on the lot size. All the processes are conducted under KS Q ISO 2859-1, and the defect rate of the entire lot of CSRP items is generally assumed to be a distribution that is similar to a binomial distribution. However, the pass-fail test for CSRP items is based on approximately 10 test items, and the factors that cause defects in these items are also heterogeneous. We propose a new methodology for estimating the defect rates of CSRP items based on Monte Carlo simulations, which are widely used in various academic fields. In addition, we show the future applicability of the methodology by applying it to the K1 gas mask case and revealing the results of the defect rate estimation. We also present future work, including the need for a standard sample of CSRP items

    Bagging Ensemble of Multilayer Perceptrons for Missing Electricity Consumption Data Imputation

    No full text
    For efficient and effective energy management, accurate energy consumption forecasting is required in energy management systems (EMSs). Recently, several artificial intelligence-based techniques have been proposed for accurate electric load forecasting; moreover, perfect energy consumption data are critical for the prediction. However, owing to diverse reasons, such as device malfunctions and signal transmission errors, missing data are frequently observed in the actual data. Previously, many imputation methods have been proposed to compensate for missing values; however, these methods have achieved limited success in imputing electric energy consumption data because the period of data missing is long and the dependency on historical data is high. In this study, we propose a novel missing-value imputation scheme for electricity consumption data. The proposed scheme uses a bagging ensemble of multilayer perceptrons (MLPs), called softmax ensemble network, wherein the ensemble weight of each MLP is determined by a softmax function. This ensemble network learns electric energy consumption data with explanatory variables and imputes missing values in this data. To evaluate the performance of our scheme, we performed diverse experiments on real electric energy consumption data and confirmed that the proposed scheme can deliver superior performance compared to other imputation methods
    corecore