3 research outputs found

    Additional file 2: Figure S1. of Fermented barley and soybean (BS) mixture enhances intestinal barrier function in dextran sulfate sodium (DSS)-induced colitis mouse model

    No full text
    BS promotes recovery from LPS-induced colitis and inflammation in mice. (A) DAI of LPS (LPS, 5 mg/kg of mouse by Intra-peritoneal injection) treated mice were scored. (B) Representative H&E stained histology from Control and BS-treated groups and statistical results. Mean value was significantly different from that of the LPS treated control group (*P < 0.05). BS, Fermented barley and soybean, DAI, disease activity index. LPS, Lipopolysaccharide. Figure S2. Basal intestinal barrier function in BS treatment. (A) Immunofluorescence of ZO-1 in Caco-2 cell monolayers incubated with BS for 48 h and images were collected by confocal microscopy. (B) RNA levels of ZO-1, Claudin1, and Occludinin BS treated Caco-2 cells measured by semi-quantitative RT-PCR. (C) BS treated mouse colon tissues were used to determine ZO-1, Claudin1 and Occludindistribution by immune fluorescence staining and images were collected by confocal microscopy. BS, Fermented barley and soybean. Figure S3. Effect of BS on the suppression of NF-κBactivity. (A) Western blot analysis of p65 nuclear trans-localization levels in the protein fractions of RAW 264.7 lysates. (B) The effects of BS on a NF-κBreporter assay in HEK 293 cells that were activated by the addition of LPS. The luciferase activity was measured as relative light intensity, using a plate reader in the luminescence mode. BS, Fermented barley and soybean, LPS, Lipopolysaccharide. Figure S4. Immunohistochemicalstaining of IL-6 in sections from BS treated mouse colon. BS, Fermented barley and soybean. (PDF 563 kb

    GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy

    No full text
    <p>Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene <i>RET</i> kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma.</p
    corecore