5,252 research outputs found

    Upper transition point for percolation on the enhanced binary tree: A sharpened lower bound

    Full text link
    Hyperbolic structures are obtained by tiling a hyperbolic surface with negative Gaussian curvature. These structures generally exhibit two percolation transitions: a system-wide connection can be established at a certain occupation probability p=pc1p=p_{c1} and there emerges a unique giant cluster at pc2>pc1p_{c2} > p_{c1}. There have been debates about locating the upper transition point of a prototypical hyperbolic structure called the enhanced binary tree (EBT), which is constructed by adding loops to a binary tree. This work presents its lower bound as pc20.55p_{c2} \gtrsim 0.55 by using phenomenological renormalization-group methods and discusses some solvable models related to the EBT.Comment: 12 pages, 20 figure

    Why Don't Country Elevators Pay Less for Low Quality Wheat? Information, Producer Preferences and Prospect Theory

    Get PDF
    Previous research found that country elevators that are the first in their area to grade wheat and pay quality-adjusted prices would receive above-normal profits at the expense of their competitors. Because of spatial monopsony, these early-adopting elevators would pass on to producers only 70% of the quality-based price differentials received from next-in-line buyers. If competing elevators also adopted these practices, profits for all elevators would return to near normal, and elevators would pass on to producers nearly all price differentials received from next-in-line buyers. However, that research could not explain why more elevators were not becoming "early adopters" by paying quality-adjusted prices. More recent research found that producers' risk aversion and lack of information about the quality of their wheat could explain more of the failure of country elevators to pass on premiums and discounts. If producers are risk averse, an elevator that imposes discounts for lower quality wheat, even while paying a higher price for high quality wheat, risks losing business if producers believe that a competing elevator may be more likely to pay them a higher price net of discounts. However, even more important is the level of information producers have about the quality of their wheat before selling it to an elevator. Still, these explanations account for only part of elevators' apparent reluctance to pay quality-adjusted prices. Since inconsistencies have been observed between expected utility and individuals' behavior, this research considers the case where producers' preferences can be more appropriately modeled by prospect theory, and whether such preferences can explain more of elevators' reluctance to pay quality-adjusted prices. A simulation model is used to measure the effects of risk-averse producers (in both expected utility and prospect theory frameworks) and limited quality information on profits that can be earned by an elevator that pays quality-adjusted prices. Results indicate that prospect theory helps to explain part, but not all, of the reluctance to pay quality-adjusted prices.Crop Production/Industries, Demand and Price Analysis,

    Classification of bi-qutrit positive partial transpose entangled edge states by their ranks

    Full text link
    We construct 333\otimes 3 PPT entangled edge states with maximal ranks, to complete the classification of 333\otimes 3 PPT entangled edge states by their types. The ranks of the states and their partial transposes are 8 and 6, respectively. These examples also disprove claims in the literature.Comment: correct the title to avoid an acronym, correct few text

    Discovery Of Ethanol-Responsive Small Rnas In Zymomonas Mobilis

    Get PDF
    Zymomonas mobilis is a bacterium that can produce ethanol by fermentation. Due to its unique metabolism and efficient ethanol production, Z. mobilis has attracted special interest for biofuel energy applications; an important area of study is the regulation of those specific metabolic pathways. Small RNAs (sRNAs) have been studied as molecules that function as transcriptional regulators in response to cellular stresses. While sRNAs have been discovered in various organisms by computational prediction and experimental approaches, their discovery in Z. mobilis has not yet been reported. In this study, we have applied transcriptome analysis and computational predictions to facilitate identification and validation of 15 novel sRNAs in Z. mobilis. We furthermore characterized their expression in the context of high and low levels of intracellular ethanol. Here, we report that 3 of the sRNAs (Zms2, Zms4, and Zms6) are differentially expressed under aerobic and anaerobic conditions, when low and high ethanol productions are observed, respectively. Importantly, when we tested the effect of ethanol stress on the expression of sRNAs in Z. mobilis, Zms2, Zms6, and Zms18 showed differential expression under 5% ethanol stress conditions. These data suggest that in this organism regulatory RNAs can be associated with metabolic functions involved in ethanol stress responses.NSF CBET-1254754Welch Foundation F-1756Cellular and Molecular BiologyChemical Engineerin

    Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals

    Get PDF
    We report on the thermally activated flux flow dependency on the doping dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found clearly that irrespective of the doping ratio, magnetoresistivity showed a distinct tail just above the Tc, offset associated with the thermally activated flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature dependence of the activation energy follows the relation U(T, B)=U_0 (B) (1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the exponent {\alpha} is changed from a low value to a high value at a crossover field of B=~2T, indicating the transition from collective to plastic pinning in the crystals. Finally, it is suggested that the 3D vortex phase is the dominant phase in the low-temperature region as compared to the TAFF region in our series samples

    Boundary correlation function of fixed-to-free bcc operators in square-lattice Ising model

    Full text link
    We calculate the boundary correlation function of fixed-to-free boundary condition changing operators in the square-lattice Ising model. The correlation function is expressed in four different ways using 2×22\times2 block Toeplitz determinants. We show that these can be transformed into a scalar Toeplitz determinant when the size of the matrix is even. To know the asymptotic behavior of the correlation function at large distance we calculate the asymptotic behavior of this scalar Toeplitz determinant using the Szeg\"o's theorem and the Fisher-Hartwig theorem. At the critical temperature we confirm the power-law behavior of the correlation function predicted by conformal field theory

    Chiral restoration at finite temperature with meson loop corrections

    Full text link
    We investigate chiral-restoration patterns of QCD for N_{c}=3 and N_{f}=2 at finite temperature (T) and zero quark-chemical potential beyond the chiral limit, indicating the explicit chiral-symmetry breaking. To this end, we employ the instanton-vacuum configuration for the flavor SU(2) sector and the Harrington-Shepard caloron for modifying relevant instanton parameters as functions of T. The meson-loop corrections (MLC), which correspond to 1/N_{c} corrections, are also taken into account to reproduce appropriate m_{q} dependences of chiral order parameters. We compute chiral condensate as a function of T and/or m_{q}. From the numerical calculations, we observe that MLC play an important role to have a correct universality-class behavior of chiral-restoration patterns in this framework, depending on m_{q}: Second-order phase transition in the chiral limit, m_{q}=0 and crossover for m_{q}>0. Without MLC, all the restoration patterns are crossover, due to simple saddle-point approximations. It turns out that T^{\chi}_{c}=159 MeV in the chiral limit and T^{\chi}_{c}=(177,186,196) MeV for m_{q}=(5,10,15) MeV, using the phenomenological choices for the instanton parameters at T=0.Comment: 12 pages, 6 figure
    corecore