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Zymomonas mobilis is a bacterium that can produce ethanol by fermentation. Due to its unique metabolism and efficient etha-
nol production, Z. mobilis has attracted special interest for biofuel energy applications; an important area of study is the regula-
tion of those specific metabolic pathways. Small RNAs (sRNAs) have been studied as molecules that function as transcriptional
regulators in response to cellular stresses. While sRNAs have been discovered in various organisms by computational prediction
and experimental approaches, their discovery in Z. mobilis has not yet been reported. In this study, we have applied transcrip-
tome analysis and computational predictions to facilitate identification and validation of 15 novel sRNAs in Z. mobilis. We fur-
thermore characterized their expression in the context of high and low levels of intracellular ethanol. Here, we report that 3 of
the sRNAs (Zms2, Zms4, and Zms6) are differentially expressed under aerobic and anaerobic conditions, when low and high
ethanol productions are observed, respectively. Importantly, when we tested the effect of ethanol stress on the expression of
sRNAs in Z. mobilis, Zms2, Zms6, and Zms18 showed differential expression under 5% ethanol stress conditions. These data
suggest that in this organism regulatory RNAs can be associated with metabolic functions involved in ethanol stress responses.

High tolerance to ethanol is a desirable feature for ethanolo-
genic strains used in industry. Given that ethanol is toxic to

cells by inhibiting cell growth and metabolism, production of eth-
anol itself represents a bottleneck for the industrial use of biolog-
ical systems (1, 2). Zymomonas mobilis is a Gram-negative bacte-
rium that can efficiently produce ethanol from several carbon
sources, including glucose, fructose, and sucrose, via the Entner-
Doudoroff pathway (3). In addition, Z. mobilis maintains cell vi-
ability anaerobically when yielding high levels of ethanol (4). In
fact, several reports have indicated that the presence of oxygen
during fermentation affects ethanol production due to increased
number of inhibitors (e.g., acetaldehyde and acetate) under aero-
bic conditions (5, 6). On the other hand, anaerobic growth of Z.
mobilis can facilitate rapid glucose consumption with an increase
in ethanol production relative to aerobic fermentation (5, 7).

Z. mobilis has a number of desirable characteristics that make it
attractive as a biofuel organism (8). For instance, Z. mobilis can
efficiently produce ethanol up to 12% (wt/vol) from carbohy-
drates at a higher rate and a 3- to 5-fold-higher yield than yeast (9).
In addition to its high ethanol-producing capability with relatively
low biomass, its rates of sugar uptake and processing are also high.
Other advantages include the following: (i) Z. mobilis can tolerate
up to 16% (wt/vol) ethanol, (ii) Z. mobilis is easy to handle for
genetic manipulation and therefore amenable for developing re-
combinant strains with enhanced ethanol productivity, and (iii)
the complete genome sequence of Z. mobilis is available for met-
abolic engineering (3, 10–12).

An intriguing aspect of Z. mobilis is the potential shifts in me-
tabolism that likely occur as the organism transitions from high to
low oxygen, where it is the most efficient at accumulating ethanol.
In this work, we wanted to examine the potential role of regulatory
small RNAs (sRNAs) in this process. These regulators are rela-
tively short in prokaryotes (�50 to 300 nucleotides) and are not
translated (13, 14), although a possibility is that they produce
small (functional or nonfunctional) peptides. Therefore, sRNAs
represent a subset of noncoding RNAs that can be both activators
and repressors for regulating proteins and mRNAs via a variety of
mechanisms. For instance, (i) antisense sRNAs affect translation

and mRNA stability of the complementary target gene, and (ii)
trans-acting sRNAs regulate mRNAs by imperfect base-pairing
with distal mRNA targets (15–17). sRNAs have been known to
regulate various metabolic pathways under cellular stress condi-
tions such as oxidative stress, ethanol, and temperature or pH
change (18–20). When cells encounter environmental changes,
regulatory sRNAs help to modulate gene expression by optimizing
cellular metabolism for survival. Our motivation in this work was
rooted by the ubiquitous discovery and validation of these regu-
latory elements in bacteria using many computational and exper-
imental strategies (14, 21–23). Interestingly, recent data have
shown higher expression of Hfq under anaerobic conditions in Z.
mobilis, with higher ethanol production than under aerobic con-
ditions (4). Hfq is a conserved bacterial Sm-like family of RNA-
binding proteins, particularly in Gram-negative bacteria, that can
bind sRNAs and their target mRNAs to direct functionality (24,
25). In addition, Hfq has been shown to play an important role in
tolerance to multiple biomass pretreatment inhibitors such as ac-
etate, vanillin, and furfural (26) in Z. mobilis. Collectively, these
findings supported our initial hypothesis regarding the possibility
that sRNAs play important mechanistic roles under differential
oxygen (and thereby ethanol) conditions in this bacterium.

The study of potential sRNA regulation in the context of bac-
terial strains that are capable of producing and tolerating high
levels of biofuels (and precursors) dates back to previous studies.
For instance, small RNAs have been confirmed in Clostridium
acetobutylicum, another important strain in the production of ac-
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etone and biobutanol from carbohydrates (27–29). In the case of
Z. mobilis, although its genome has been completely sequenced
(30), most research has focused on describing membrane compo-
sition, understanding patterns of gene expression, and character-
izing lipid composition. In this study, we focused on investigating
the potential presence of regulatory sRNAs in Z. mobilis. We fur-
thermore characterized the expression of these newly uncovered
RNA elements under anaerobic and aerobic conditions (known to
result in differential levels of ethanol accumulation).

MATERIALS AND METHODS
Strains and culture condition. Zymomonas mobilis ZM4 (ATCC 31821)
was cultured in RM medium (glucose, 20.0 g/liter; yeast extract, 10.0
g/liter; KH2PO4, 2.0 g/liter [pH 6.0]) (55) at 30°C (pH 6.0). A single
colony was inoculated into 5 ml of RM medium and cultured aerobically
or anaerobically at 30°C overnight. A 1/100 of initial culture was added to
1 liter of prewarmed RM broth and then cultured overnight at 30°C with
shaking at 150 rpm. The inoculum was added to each culture so that the
initial optical density at 600 nm (OD600) was around 0.17. Each culture
was grown aerobically or anaerobically and then collected at 13 h (late
exponential/early stationary phase) or 26 h (late stationary phase) postin-
oculation as pH was adjusted every 4 h. The experiments were done in
triplicate. For anaerobic culture, medium was nitrogen purged and tightly
capped in a completely sealed flask. Cell density was measured at 600 nm
using a spectrophotometer (SmartSpec Plus; Bio-Rad).

Measurement of glucose and ethanol concentrations. Glucose con-
centrations were measured using the YSI 7100 multiparameter bioanalyti-
cal system (YSI Life Sciences, Yellow Springs, OH). Ethanol concentra-
tions were measured using a UV-based ethanol assay kit (R-Biopharm,
Darmstadt, Germany) according to the manufacturer’s protocol.

Total RNA preparation. Total RNA was prepared according to a pro-
tocol previously published (31) for all the growth conditions tested.
Briefly, cells were grown aerobically or anaerobically and collected at 16 h
after inoculation for deep sequencing. All centrifugation was performed at
4°C. Cells were pelleted and resuspended in 1 ml of TRIzol reagent (In-
vitrogen). Following pelleting, cells were transferred to screw-cap tubes
containing glass beads (Sigma) and incubated at 25°C for 5 min. Cells
were lysed using a mini-beadbeater (Biospec), with 100-s pulses three
times. Cells were kept on ice for 10 min between each 100-s treatment. The
beads and cellular debris were centrifuged at 4°C for 2 min. The superna-
tant was transferred to a clean siliconized 2-ml tube. After addition of 300
�l of chloroform-isoamyl alcohol mixture (24:1, vol/vol), the samples
were inverted for 15 s and then incubated at 25°C for 3 min. Then, tubes
were centrifuged at 13,000 rpm for 10 min, and the aqueous top phase was
transferred to a clean siliconized 1.5-ml tube. Following this step, 270 �l
of isopropanol and 270 �l of a mixture of 0.8 M sodium citrate and 1.2 M
sodium chloride were added. The samples were mixed well and then in-
cubated on ice for 10 min. The RNA was pelleted by centrifugation at
13,000 rpm for 15 min. The pellet was washed with 1 ml of 95% cold
ethanol and centrifuged for 5 min. The pelleted RNA was allowed to air
dry for �5 min and was resuspended in 30 �l of RNase-free water (Am-
bion). The RNA concentration was measured with a NanoDrop ND-1000
spectrophotometer (Thermo). Samples were stored at �20°C. Total
RNAs were validated on 10% urea gels to verify the quality of the RNAs
and make sure that the RNAs did not undergo any degradation.

Deep sequencing for RNA and data processing. Prepared RNA was
quantified and qualified using a bioanalyzer before sequencing. The NEB-
Next Small RNA Library Prep Set for Illumina (New England BioLabs
Inc.) was used for generating small RNA libraries. Sequencing was per-
formed using an Illumina HiSeq 2000 with paired-end 100-base reads
(Genomic Sequencing and Analysis Facility at the University of Texas at
Austin). Prior to analyzing sequencing results, the adapter sequences were
trimmed to remove low-quality bases at the ends of the reads. Data were
processed using BWA (Burrows Wheeler Aligner) (32) and mapped onto
the Z. mobilis ZM4 complete genome (GenBank accession number

NC_006526). The mapped sequencing reads were visualized in Integrated
Genome Viewer (IGV) (33).

Computational analysis of predicted sRNA by Blast. Sequence con-
servation analysis of intergenic regions was implemented using WU-
BLAST (blastn 2.0MP-WashU [4 May 2006]; W. Gish, personal commu-
nication). WU BLAST output was filtered with a PERL script to a stringent
threshold of at least 50% query sequence coverage with 50% identity in the
conserved region. These parameters were selected according to search
criteria that have been developed to analyze the conservation levels of
protein-encoding sequences, where the expected level of conservation is
much higher. We categorized within a genus and outside a genus for the
data analysis.

Northern blotting. Small RNA Northern blotting was performed as
described in reference 31. Briefly, Northern blotting analysis was per-
formed to verify expression of potential sRNAs candidates that resulted
from computational predictions and transcriptomic analysis. DNA oligo-
nucleotide probes specific for each candidate sRNA (see Table S1 in the
supplemental material) were labeled using 20 pmol of oligonucleotide in
a 20-�l kinase reaction mixture containing 25 �M [�-32P]ATP and 20 U
of T4 polynucleotide kinase (NEB) at 37°C for 1 h. A ladder (�X174
DNA/HinfI [Promega]) was labeled in the same manner. Total RNA (50
�g to �100 �g) was separated on a 10% denaturing polyacrylamide gel
that was then transferred to a positively charged membrane (Hybond N�;
GE Life Sciences) for blotting. Hybridization was performed using Amer-
sham Rapid-hyb buffer (GE Healthcare) by following their recommended
protocol for oligonucleotide probes, with a 3-h incubation or overnight
incubation at 42°C. After three washing steps with washing buffer (5�
SSC– 0.1% SDS [1� SSC is 0.15 M NaCl plus 0.015 M sodium citrate] for
the 1st washing and 1� SSC– 0.1% SDS for the 2nd and 3rd washing
steps), membranes were exposed to a phosphor screen overnight and
visualized with a phosphorimager (Typhoon imager; Amersham Biosci-
ences).

Deep 5= and 3= RACE. Deep rapid amplification of cDNA ends
(RACE) was performed using total RNA samples from both aerobic and
anaerobic cultures. 5= deep RACE was performed using the Ion Torrent
316 chip (Wadsworth Center Applied Genomic Technologies Core Facil-
ity) as previously described (23, 34). Briefly, the FirstChoice RLM-RACE
kit (Ambion) was used with minor modifications to the protocol. A total
of 8 �g of RNA was treated with tobacco acid pyrophosphatase (TAP) at
37°C for 1 h, followed by ligation of the 5= RACE kit adapter at 37°C for 1
h. The resulting RNA was then reverse transcribed according to the man-
ufacturer’s protocol. PCR was performed on the resulting cDNA. All
primer sequences used for deep RACE are listed in Table S2 in the sup-
plemental material. To increase the yield of some sRNAs, PCRs were re-
amplified using the product from the original reaction as a template and
the same primers. Resulting PCR products were purified using the
QIAquick PCR purification kit (Qiagen) and RNase-free water (Ambion)
for final elution. All products were pooled.

For 3=RACE, a published protocol (34) was followed, using a miScript
reverse transcription kit (Qiagen) to perform reverse transcription. PCR
was performed on the resulting cDNA. Resulting PCR products were pu-
rified using a QIAquick PCR purification kit (Qiagen) and eluted in
RNase-free water (Ambion). Sequences of all primers used were listed (see
Table S2 in the supplemental material). All products were pooled and
sequenced using an Ion Torrent 316 chip at the Wadsworth Center Ap-
plied Genomic Technologies Core Facility. Data analysis was done using
public resources in the Galaxy website (http://usegalaxy.org/). To analyze
the sequencing results for the 5= and 3=RACE, adapter sequences were first
removed for each sample and then sequences lacking 5= or 3= adapter
sequences were removed. After analysis of the sequencing results, data
were mapped onto the Z. mobilis ZM4 complete genome sequence
(NC_006526) using Bowtie2 (35) with default parameters and visualized
with IGV (33).
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Nucleotide sequence accession number. Newly determined sequenc-
ing data reported in this manuscript are available from Gene Expression
Omnibus (GEO) under accession number GSE57773.

RESULTS
Transcriptome analysis of Zymomonas mobilis for identifying
putative small RNAs. A combination of computational and ex-
perimental methods was used in this work to identify novel sRNAs
in Z. mobilis. First, we isolated total RNA from cells cultured under
anaerobic conditions (as higher growth rates are observed under
these conditions for Z. mobilis) and conducted a high-throughput
transcriptome sequencing analysis using Illumina Hiseq. Prior to
sequencing, RNA quantification and quality assessment were per-
formed with a bioanalyzer. Following mapping of sequencing re-
sults to the Z. mobilis complete genome (NCBI reference sequence
NC_006526.2), all hits were visualized using Integrative Genom-
ics Viewer (IGV; http://www.broadinstitute.org/igv/). The exper-
imental search scheme is outlined in Fig. 1A. Importantly, we
identified a total of 95 candidates that mostly represented highly
expressed transcripts (having over 100 mapped sequence reads; at
least 10% of the average number of reads observed in tRNAs).
Although we expected that slightly expressed sRNA candidates
could also have an important role in regulation (36), our initial
focus on highly expressed candidates stemmed from our interest
in further confirming expression of these sRNAs via Northern
blotting and in fully mapping the transcript ends. These sRNA
characterization techniques are known to be more robust with
larger sRNA quantities (37). It is worthwhile to note that in this
study, we narrowed our search to intergenic sRNA candidates.
Our rationale for excluding sequences that even partially over-
lapped known open reading frames is that intergenic candidates
have a lower possibility of representing fragmented mRNA tran-
scripts or other degradation products.

Computationally predicted sRNAs in Zymomonas mobilis.
As a complementary technique to sRNA identification in Z. mo-
bilis, we used a combination of computational approaches that
have proven successful in our previous work (23). Our interest in
complementing our experimental search with such approaches

stemmed from the fact that even though RNA sequencing is a
powerful transcriptome analysis technique, it can only capture
transcripts expressed during the particular experimental condi-
tion under which cells are collected for RNA preparation. It is
therefore not surprising that computational predictions have also
become widely used for the discovery of small regulatory RNAs in
bacteria (14, 21). We performed two specific computational pre-
diction approaches to identify novel sRNA candidates in Z. mobi-
lis: (i) SIPHT (sRNA identification protocol using high-through-
put technologies) (38) and (ii) a bioinformatics analysis recently
developed in our laboratory (unpublished data) based on the
search of long and conserved intergenic regions. Using SIPHT, we
identified 4 novel sRNA candidates. As a side note, SIPHT predicts
intergenic loci in any of the over 1,500 bacterial replicons in the
NCBI database guided by sequence conservation upstream of pu-
tative Rho-independent terminators (38).

In addition to using SIPHT to identify potential sRNA targets,
we performed a genome-wide BLAST conservation and size anal-
ysis of all 1,011 intergenic regions that have not been annotated to
be gene encoding in Z. mobilis and predicted 20 additional candi-
dates (see Materials and Methods for a detailed description).
These predictions take advantage of sRNA enrichment trends that
we have previously established in long and highly conserved re-
gions of multiple bacterial genomes (we plan to publish the results
in the future). Results from all bioinformatics studies are listed in
Table S3 in the supplemental material. Collectively, 106 sRNA
candidates were identified from computational analysis and ex-
perimental approaches (see Table S4 in the supplemental mate-
rial).

When comparing results from our computational analysis, we
found that 3 out of 4 candidates predicted by SIPHT were also
identified in our bioinformatics analysis. However, only 10 of the
85 candidates that were selected from the analysis of deep se-
quencing data were also predicted computationally. The com-
bined experimental and computational scheme for selecting
sRNA candidates is summarized in Fig. 1A. Figure 1B shows the
overlap in sRNA predictions from all methods used in this work.

A

Predicted by
SIPHT

Predicted by
Blast analysis

Deep sequencing

1

1

2

8

9

85

Total RNA extraction

Library construction for Deep sequencing

RNA Deep sequencing using Illumina Hiseq

Data analysis and visualization in IGV

Growth of Z. mobilis

95 candidates are selected 
(at least ~100 reads)

B

FIG 1 Experimental scheme for sRNA candidate selection. (A) This schematic shows the strategy for selecting sRNA candidates from deep-sequencing methods.
(B) Each number of candidate sRNAs from experimental and computational approaches is shown in the Venn diagram.
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Strikingly, one only candidate was identified by all prediction
methods; this further highlights the different pools of potential
sRNA candidates that were tapped into by these methods.

High-throughput validation of sRNAs using Northern blot-
ting. To validate sRNA expression from the pool of all candi-
dates, we performed large-scale Northern blotting. Cells were
grown anaerobically and collected for RNA extraction in sta-
tionary phase given that Z. mobilis Hfq has been shown to be
more abundantly expressed in anaerobic, stationary phase than

in aerobic, stationary phase (26). As Hfq is known as a global
sRNA regulator (39), we reasoned that there was a higher
chance to identify (and experimentally validate) sRNAs under
this condition. A list of all the probes used for Northern blot-
ting is included in Table S1 in the supplemental material. Given
that deep-sequencing data did not provide strand information,
sRNAs were probed on both the plus strand and the minus
strand. In addition, each candidate was probed with at least two
different probes. Importantly, expression of a total of 15 can-
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FIG 2 Summary of validated sRNA candidates. Properties of Zms1 to Zms24 are shown. The approximate sRNA size observed by Northern blotting corresponds with
5=and 3=deep RACE results. Coordinates in bold were verified with 5=and 3=deep RACE. Other coordinates are from predicted coordinates from a computational search
or calculated from Northern blotting. Arrows between coding genes are represented sRNAs, and the direction of arrows shows the orientation of each sRNA. All
prediction methods are shown. Identified sRNAs are classified into two categories: entirely intergenic or overlapping adjacent genes.
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didates was confirmed with multiple probes, designed to bind
different regions of the putative sRNA transcript.

Figures 2 and 3 show a summary of all the confirmed sRNAs as
well as an image of the positive signal obtained by Northern blot-
ting using their corresponding probes. Confirmed sRNAs were
originally enumerated with a designated Zms (Zymomonas mobi-
lis sRNA) nomenclature, but they were then annotated according
to a published system for bacterial sRNAs (40). As indicated in Fig.
2, 12 of the confirmed sRNAs were identified from the high-
throughput sequencing analysis and 3 were identified computa-
tionally; 3 sRNAs were found from both prediction methods. It is
worthwhile pointing out the presence of multiple bands in some
of our samples; these could represent degradation products or
several transcription products from the same region. Importantly,
the same patterns were observed despite the use of different
probes for each region.

Mapping of transcription start and end site by 5= and 3= deep
RACE. Given that high-throughput transcriptome analysis does
not provide precise information of transcriptional start and end
sites, we adapted deep 5= and 3= RACE analysis for precise map-
ping of transcript ends and for further confirmation of sequencing
results. This method combines conventional RACE technique
with deep-sequencing technology for the efficient verification of
transcription start and end site in sRNA candidates (34, 41). Co-
ordinates for the 5= and 3= ends of each sRNA from deep RACE
analysis are shown in Fig. 2. Figure 4 shows representative data for
mapping transcription start and end sites from 5= and 3= deep
RACE for 2 selected sRNA candidates. As determined by compar-
ing the lengths of confirmed sRNAs, the results are in agreement

with previous results confirmed by Northern blotting. Mapping
results of all sRNAs by deep RACE with adjacent genes are shown
in Fig. S1 in the supplemental material.

Differential expression of sRNA candidates under different
conditions of ethanol production. To understand how expression
of the confirmed sRNAs could change under different conditions of
ethanol accumulation, we cultured cells under anaerobic and aerobic
conditions. We pursued the analysis of all confirmed sRNAs under
both aerobic and anaerobic conditions, as these could be important
to basic cellular functions and to the regulation of ethanol production
and/or tolerance, respectively. It has been known that the lack of
oxygen positively affects glucose consumption, ethanol accumula-
tion, and growth in Z. mobilis (4). To achieve conditions that show
differential production of ethanol, Z. mobilis was grown aerobically
and anaerobically. As shown in Fig. 5A, the maximal growth rates of
Z. mobilis under aerobic and anaerobic conditions (estimated as 0.26
h�1 and 0.28 h�1, respectively) did not show a significant difference.
In addition, we verified established trends in glucose consumption
and ethanol production under these conditions. After 26 h of culture,
84.23 mM and 169.74 mM ethanol were measured under aerobic and
anaerobic conditions, respectively. As shown in Fig. 5B, glucose is
consumed faster under the anaerobic conditions and the correspond-
ing production of ethanol is more rapid under anaerobic conditions.
These trends were also consistent with previously published reports
(4) and confirmed that the desired culturing conditions were
achieved. After screening all confirmed sRNAs, one of the most in-
teresting aspects of this work was the finding that 3 sRNAs (Zms2,
Zms4, and Zms6) showed differential expression under aerobic and
anaerobic culture conditions (Fig. 5C). Zms2 and Zms6 showed 0.8-
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FIG 3 Representative Northern blots for confirmed sRNA in Z. mobilis. Northern blotting was performed to examine the expression of candidate sRNAs.
Representative blots were confirmed with at least two different probes (see Table S1 in the supplemental material). A black arrowhead indicates the sRNA band
for each candidate. Lane 1, �X174 DNA-HindIII-digested ladder; lane 2, sRNA.
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fold and 0.64-fold decreases, respectively, in expression level under
anaerobic culture condition. Inversely, Zms4 showed 1.5-fold-in-
creased expression under anaerobic culture conditions. These results
suggested the possibility that these sRNAs could be functionally asso-
ciated with the metabolic regulation of ethanol production and/or
ethanol tolerance.

Differential expression of sRNA candidates is responsive to
environmental growth conditions. After confirming differen-
tially expressed sRNAs under different levels of ethanol, we next
tested directly the effect of ethanol stress on the expression of all
identified sRNAs. Previous work had shown that coordinated
changes in expression of specific heat shock proteins and meta-
bolic enzymes (e.g., alcohol dehydrogenase) are important under
high ethanol stress (42, 43). This supported the possibility that
sRNAs could also be differentially expressed as potential posttran-
scriptional regulators under high ethanol stress conditions.
Therefore, we systematically tested expression levels of all identi-
fied sRNA candidates under the ethanol stress conditions. We
chose a 5% (vol/vol) ethanol supplement to the medium as the
ethanol stress conditions given that 6% (vol/vol) ethanol was pre-
viously shown to affect cell viability dramatically (44). We con-
firmed that Zms2, Zms6, and Zms18 showed differential expres-
sion under ethanol stress conditions (Fig. 6A). Interestingly, Zms2
and Zms6 also exhibited differential expression between aerobic
and anaerobic conditions. In contrast, Zms18 only showed differ-
ential expression between 0% ethanol-supplemented growth con-
ditions and 5% ethanol-supplemented growth conditions, indi-
cating its potential involvement in the regulation of the ethanol
tolerance in Z. mobilis. In the case of Zms4, even though it was
observed to be expressed at higher levels under anaerobic condi-
tions (relative to aerobic conditions), it was not observed to be
differentially expressed between 0% and 5% ethanol stress condi-
tions (data not shown). A plausible possibility is that Zms4 is more
involved in managing oxygen stress.

Lastly, all experiments described above were done under con-
ditions of late exponential phase. Given variations in gene expres-

sion levels that have been confirmed under different growth
phases in Yersinia and Mycobacterium (45, 46), we reasoned that
functional sRNAs could also be differentially expressed under dif-
ferent growth phases in Zymomonas. Interestingly, Hfq, which is
known as an RNA chaperone in bacteria (25, 47), has been iden-
tified in Z. mobilis and showed greater expression in anaerobic
stationary phase (4). To test for differential sRNA expression as a
result of different growth phases, we harvested total RNA samples
from cells collected at 13 h postinoculation (late exponential
phase) and 26 h postinoculation (late stationary phase). Impor-
tantly, Zms2 and Zms6 also showed differential expression be-
tween early and late stationary phase (Fig. 6B). Both sRNAs accu-
mulate until late exponential phase and then decrease in late
stationary phase.

Target prediction of verified sRNAs. As the underlying mech-
anism of sRNAs depends on base-pairing, many computational
resources for sRNA target prediction are available. Given the im-
portance of identifying sRNA targets for unraveling their under-
lying mechanistic roles, we performed an initial target prediction
analysis using TargetRNA2 (http://cs.wellesley.edu/�btjaden
/TargetRNA2/) as a preliminary study. We focused on Zms2,
Zms4, Zms6, and Zms18, which were differentially expressed un-
der different stress conditions. Table 1 shows the list of target
genes obtained using TargetRNA2. All listed targets have a P value
of 	0.001. In case of Zms2, there is an ABC (ATP-binding cas-
sette) transporter gene in the list. Recently, an ABC transporter
gene has been found as a target gene for sRNAs in Clostridium, and
it could be related to antibiotic resistance (27); however, we
blasted the sequence of this sRNA and that of Zms2, and there is
no sequence homology (data not shown). Further analysis will
focus on validating these predictions.

DISCUSSION

Recent research on Z. mobilis has unraveled changes in its tran-
scriptomic and metabolic pathways associated with ethanol me-
tabolism. In this study, we successfully discovered 15 novel sRNAs

FIG 4 Representative 5= and 3= deep RACE data. Two representative (Zms2 and Zms6) deep RACE graphs are shown. Blue lines show the number of 5= RACE
reads mapped to respective genome, while red lines show the number of 3= RACE reads. The black arrow under the chart shows where the sRNA is located, and
the gray arrows represented the adjacent annotated coding regions.
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in Z. mobilis utilizing experimental and computational ap-
proaches. Although 106 candidates selected from our combinato-
rial methods were tested by Northern blotting, expression was
confirmed for only 15 sRNAs. It is worth noting the possibility
that many of the candidates, identified by transcriptomic or com-

putational analysis, were below the detectable threshold by North-
ern blotting under the experimental conditions used in this study.
Compared to mapped reads of tRNAs in deep sequencing, which
were mapped with an average of 1,500 reads, identified sRNA
candidates showed very low read numbers. This could partially
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explain why we detected only 14% of sRNAs by Northern blotting
even though we used an excessive amount of total RNA (up to 100
�g) for detection. Despite high levels of total RNA used for testing,
the intensity of some detected sRNAs is very low; this attests to the
limitation of Northern blotting as an experimental tool for sRNA
validation. Furthermore, total RNA, used for deep sequencing and
Northern blotting, was extracted from cells only under limited
physiological conditions. This limited number of growth condi-
tions can also explain why some predicted sRNAs were not de-
tected experimentally, since they could still be transcribed under
different conditions that we have not tested.

Besides the analysis of sRNA candidates from deep-sequencing
data, we also analyzed expression of mRNAs under aerobic and
anaerobic conditions. When we compared our results with pub-
lished transcriptomic analysis data (4), we found that most up-
regulated and downregulated genes under aerobic conditions
were also identified in our study (see Table S5 in the supplemental
material). We confirmed that Entner-Doudoroff pathway genes
were more abundant under anaerobic conditions. We also ob-
served that several transcription and response regulators are up-
regulated in aerobic conditions. Additionally, we detected about
200 upregulated genes and 62 downregulated genes under aerobic
conditions. Most of the newly found genes in our study are related
to metabolism and cellular processes. Our analysis showed that
alcohol dehydrogenase, which was downregulate under ethanol
treatment conditions (44), was less abundant in late exponential
phase under aerobic conditions (see Table S5). We also confirmed
that the Hfq gene (ZMO0347) was more abundant under anaer-
obic conditions. Differences in our data relative to previously
published microarray data (4) (particularly in the fold changes
detected) could be explained by the increase sensitivity of deep-
sequencing methods and by the collection of samples under dif-
ferent growth phases.

It is also worthwhile to point out that although we initially
selected sRNA candidates from the intergenic regions, upon con-
firmation by Northern blotting, some sRNAs were detected to be
longer than predicted. Our 5= and 3= deep RACE results further
confirmed that some sRNAs overlapped with 5= or 3= ends of
adjacent genes. Thus, we categorized our identified sRNAs into
two groups based on their location: intergenic sRNAs and over-
lapping sRNAs. Intergenic sRNAs are transcribed from intergenic

regions between adjacent genes. On the other hand, overlapping
sRNAs can be located at the 5= untranslated regions (UTRs) of
adjacent genes to function as riboswitches (48) or can also be
generated from mRNA posttranslational processing if encoded
from the 3= end of the adjacent gene. It has been known that
sRNAs can be transcribed from independent promoters or de-
rived from processing of mRNA UTRs (49, 50). There are several
pieces of evidence that the sRNAs identified in this study are not
fragments of mRNAs: (i) many sRNAs are transcribed in different
orientations from adjacent genes, and (ii) our several Northern
blots showed no larger bands that could correspond to prepro-
cessed mRNAs. Even though it is unlikely that any of the sRNAs
we identified in this study were generated by mRNA processing, it
is well established that regulatory sRNAs can be derived from pro-
cessing of mRNA UTRs (51, 52).

To further characterize the uncovered sRNAs, we confirmed
their expression levels under ethanol levels (5%) that have been
reported to stress cell growth and decrease ethanol productivity
(53). Three sRNAs (Zms2, Zms6, and Zms18) were expressed dif-
ferentially under ethanol stress, suggesting that they could be re-
lated to regulatory mechanisms of ethanol production or toler-
ance in Z. mobilis. Analysis of comprehensive comparison with
transcriptomic and proteomic data under this condition might be
the next step for defining targets of sRNAs to understand regula-
tory mechanisms. Likewise, we uncovered in our studies two
sRNAs (Zms2 and Zms6) that accumulate until late exponential
phase and then decrease in late stationary phase. In Yersinia, some
sRNAs showed the same pattern of expression under late expo-
nential and stationary phase, and these differential levels of sRNA
expression correlated with Hfq expression (45). Therefore, we
speculate that function of these sRNAs might be Hfq dependent.
Further analysis should be performed to understand the role of
Hfq in Zymomonas mobilis. Lastly, it is noteworthy that prelimi-
nary target prediction analysis shows ABC transporter genes as a
putative target of Zms2. However, there is no conservation in
sequence of Zms2 in other organisms. Ongoing studies are focus-
ing on elucidating the metabolic roles of Zms2 and other differ-
entially expressed sRNAs under ethanol. As part of these future
efforts, we are focusing on experimental validation of the targets
identified by computational prediction methods.

This study reinforces the importance of sRNA-associated
mechanisms for engineering of microbes that are relevant to the
production of biofuels. Interestingly, sRNA regulation could also
be exploited in the metabolic synchronization of ethanologenic
organisms within consortia. This strategy is already being ex-
plored to increase levels of ethanol production involving cocul-
tures of bacteria and yeast (54).
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