69 research outputs found

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Automated real-space lattice extraction for atomic force microscopy images

    Get PDF
    Analyzing atomically resolved images is a time-consuming process requiring solid experience and substantial human intervention. In addition, the acquired images contain a large amount of information such as crystal structure, presence and distribution of defects, and formation of domains, which need to be resolved to understand a material’s surface structure. Therefore, machine learning techniques have been applied in scanning probe and electron microscopies during the last years, aiming for automatized and efficient image analysis. This work introduces a free and open source tool (AiSurf: Automated Identification of Surface Images) developed to inspect atomically resolved images via scale-invariant feature transform and clustering algorithms. AiSurf extracts primitive lattice vectors, unit cells, and structural distortions from the original image, with no pre-assumption on the lattice and minimal user intervention. The method is applied to various atomically resolved non-contact atomic force microscopy images of selected surfaces with different levels of complexity: anatase TiO2(101), oxygen deficient rutile TiO2(110) with and without CO adsorbates, SrTiO3(001) with Sr vacancies and graphene with C vacancies. The code delivers excellent results and is tested against atom misclassification and artifacts, thereby facilitating the interpretation of scanning probe microscopy images

    A Multitechnique Study of C2H4Adsorption on Fe3O4(001)

    Get PDF
    The adsorption/desorption of ethene (C2H4), also commonly known as ethylene, on Fe3O4(001) was studied under ultrahigh vacuum conditions using temperature-programmed desorption (TPD), scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT)-based computations. To interpret the TPD data, we have employed a new analysis method based on equilibrium thermodynamics. C2H4adsorbs intact at all coverages and interacts most strongly with surface defects such as antiphase domain boundaries and Fe adatoms. On the regular surface, C2H4binds atop surface Fe sites up to a coverage of 2 molecules per (√2 × √2)R45° unit cell, with every second Fe occupied. A desorption energy of 0.36 eV is determined by analysis of the TPD spectra at this coverage, which is approximately 0.1-0.2 eV lower than the value calculated by DFT + U with van der Waals corrections. Additional molecules are accommodated in between the Fe rows. These are stabilized by attractive interactions with the molecules adsorbed at Fe sites. The total capacity of the surface for C2H4adsorption is found to be close to 4 molecules per (√2 × √2)R45° unit cell

    Resolving the adsorption of molecular O2 on the rutile TiO2(110) surface by noncontact atomic force microscopy

    No full text
    Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O2 adsorption on the rutile TiO2(110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O2 molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing

    Formaldehyde Adsorption on the Anatase TiO 2

    No full text
    Formaldehyde (CH2O) adsorption on the anatase TiO2(101) surface was studied with a combination of experimental and theoretical methods. Scanning tunneling microscopy, noncontact atomic force microscopy, temperature-programmed desorption, and X-ray photoelectron spectroscopy were employed on the experimental side. Density functional theory was used to calculate formaldehyde adsorption configurations and energy barriers for transitions between them. At low coverages (<0.25 monolayer), CH2O binds via its oxygen atom to the surface 5- coordinated Ti atoms Ti5c (monodentate configuration). At higher coverages, many adsorption configurations with comparable adsorption energies coexist, including a bidentate configuration and paraformaldehyde chains. The adsorption energies of all possible adsorption configurations lie in the range from 0.6 to 0.8 eV. Upon annealing, all formaldehyde molecules desorb below room temperature; no other reaction products were detected

    Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

    No full text
    The multifaceted physics of oxides is shaped by their composition and the presence of defects, which are often accompanied by the formation of polarons. The simultaneous presence of polarons and defects, and their complex interactions, pose challenges for first-principles simulations and experimental techniques. In this study, we leverage machine learning and a first-principles database to analyze the distribution of surface oxygen vacancies (VO) and induced small polarons on rutile TiO2(110), effectively disentangling the interactions between polarons and defects. By combining neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous VO distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand and predict defective surface patterns at enhanced length scales, identifying the specific role of individual types of defects. Specifically, surface-polaron-stabilizing VO-configurations are identified, which could have consequences for surface reactivity

    Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst

    Get PDF
    Single-atom catalysts (SACs) bridge homo- and heterogeneous catalysis because the active site is a metal atom coordinated to surface ligands. The local binding environment of the atom should thus strongly influence how reactants adsorb. Now, atomically resolved scanning-probe microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, and DFT are used to study how CO binds at different Ir1 sites on a precisely defined Fe3O4(001) support. The two- and five-fold-coordinated Ir adatoms bind CO more strongly than metallic Ir, and adopt structures consistent with square-planar IrI and octahedral IrIII complexes, respectively. Ir incorporates into the subsurface already at 450 K, becoming inactive for adsorption. Above 900 K, the Ir adatoms agglomerate to form nanoparticles encapsulated by iron oxide. These results demonstrate the link between SAC systems and coordination complexes, and that incorporation into the support is an important deactivation mechanism
    corecore