32 research outputs found
High-density Mapping Guided Pulmonary Vein Isolation for Treatment of Atrial Fibrillation-Two-year clinical outcome of a single center experience
Pulmonary vein isolation (PVI) as interventional treatment for atrial fibrillation (AF) aims to eliminate arrhythmogenic triggers from the PVs. Improved signal detection facilitating a more robust electrical isolation might be associated with a better outcome. This retrospective cohort study compared PVI procedures using a novel high-density mapping system (HDM) with improved signal detection vs. age-and sex-matched PVIs using a conventional 3D mapping system (COM). Endpoints comprised freedom from AF and procedural parameters. In total, 108 patients (mean age 63.9 +/- 11.2 years, 56.5% male, 50.9% paroxysmal AF) were included (n = 54 patients/group). Our analysis revealed that HDM was not superior regarding freedom from AF (mean follow-up of 494.7 +/- 26.2 days), with one- and two-year AF recurrence rates of 38.9%/46.5% (HDM) and 38.9%/42.2% (COM), respectively. HDM was associated with reduction in fluoroscopy times (18.8 +/- 10.6 vs. 29.8 +/- 13.4 min;p < 0.01) and total radiation dose (866.0 +/- 1003.3 vs. 1731.2 +/- 1978.4 cGy;p < 0.01) compared to the COM group. HDM was equivalent but not superior to COM with respect to clinical outcome after PVI and resulted in reduced fluoroscopy time and radiation exposure. These results suggest that HDM-guided PVI is effective and safe for AF ablation. Potential benefits in comparison to conventional mapping systems, e.g. arrhythmia recurrence rates, have to be addressed in randomized trials
Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA
HIV-1-infected individuals harbor a latent reservoir of infected CD4⁺ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones
Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA
HIV-1-infected individuals harbor a latent reservoir of infected CD4+ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones