729 research outputs found

    RDD-Eclat: Approaches to Parallelize Eclat Algorithm on Spark RDD Framework

    Full text link
    Initially, a number of frequent itemset mining (FIM) algorithms have been designed on the Hadoop MapReduce, a distributed big data processing framework. But, due to heavy disk I/O, MapReduce is found to be inefficient for such highly iterative algorithms. Therefore, Spark, a more efficient distributed data processing framework, has been developed with in-memory computation and resilient distributed dataset (RDD) features to support the iterative algorithms. On the Spark RDD framework, Apriori and FP-Growth based FIM algorithms have been designed, but Eclat-based algorithm has not been explored yet. In this paper, RDD-Eclat, a parallel Eclat algorithm on the Spark RDD framework is proposed with its five variants. The proposed algorithms are evaluated on the various benchmark datasets, which shows that RDD-Eclat outperforms the Spark-based Apriori by many times. Also, the experimental results show the scalability of the proposed algorithms on increasing the number of cores and size of the dataset.Comment: 16 pages, 6 figures, ICCNCT 201

    Dynamical tunneling in molecules: Quantum routes to energy flow

    Full text link
    Dynamical tunneling, introduced in the molecular context, is more than two decades old and refers to phenomena that are classically forbidden but allowed by quantum mechanics. On the other hand the phenomenon of intramolecular vibrational energy redistribution (IVR) has occupied a central place in the field of chemical physics for a much longer period of time. Although the two phenomena seem to be unrelated several studies indicate that dynamical tunneling, in terms of its mechanism and timescales, can have important implications for IVR. Examples include the observation of local mode doublets, clustering of rotational energy levels, and extremely narrow vibrational features in high resolution molecular spectra. Both the phenomena are strongly influenced by the nature of the underlying classical phase space. This work reviews the current state of understanding of dynamical tunneling from the phase space perspective and the consequences for intramolecular vibrational energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem. (Review to appear in Oct. 2007

    Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis

    Get PDF
    OBJECTIVE: To assess the association between proximity to the inner (ventricular and aqueductal) and outer (pial) surfaces of the brain and the distribution of normal appearing white matter (NAWM) and grey matter (GM) abnormalities, and white matter (WM) lesions, in multiple sclerosis (MS). METHODS: 67 people with relapse-onset MS and 30 healthy controls were included in the study. Volumetric T1 images and high-resolution (1 mm(3)) magnetisation transfer ratio (MTR) images were acquired and segmented into 12 bands between the inner and outer surfaces of the brain. The first and last bands were discarded to limit partial volume effects with cerebrospinal fluid. MTR values were computed for all bands in supratentorial NAWM, cerebellar NAWM and brainstem NA tissue, and deep and cortical GM. Band WM lesion volumes were also measured. RESULTS: Proximity to the ventricular surfaces was associated with progressively lower MTR values in the MS group but not in controls in supratentorial and cerebellar NAWM, brainstem NA and in deep and cortical GM. The density of WM lesions was associated with proximity to the ventricles only in the supratentorial compartment, and no link was found with distance from the pial surfaces. CONCLUSIONS: In MS, MTR abnormalities in NAWM and GM are related to distance from the inner and outer surfaces of the brain, and this suggests that there is a common factor underlying their spatial distribution. A similar pattern was not found for WM lesions, raising the possibility that different factors promote their formation

    Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

    Get PDF
    Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for few hours providing steric repulsion and by increasing the viscosity of the suspension. The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated iron micro- and nanoparticle suspensions. The synergistic effect between GG and XG generates a viscoelastic gel that can maintain 20 g/L iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined polymer structure the yield stress of which contrasts the downward stress exerted by the iron particles, and (iii) the adsorption of the polymers to the iron surface having an anchoring effect on the particles. The XG/GG viscoelastic gel is characterized by a marked shear thinning behavior. This property, coupled with the low biopolymer concentration, determines small viscosity values at high shear rates, facilitating the injection in porous media. Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times at low temperatures and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the flowability and the delivery of the suspensions to the target as well as to effectively tune and control the release of the iron particle

    Impact of statins and ACE inhibitors on mortality after COPD exacerbations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of our study was to examine the association of prior outpatient use of statins and angiotensin converting enzyme (ACE) inhibitors on mortality for subjects ≥ 65 years of age hospitalized with acute COPD exacerbations.</p> <p>Methods</p> <p>We conducted a retrospective national cohort study using Veterans Affairs administrative data including subjects ≥65 years of age hospitalized with a COPD exacerbation. Our primary analysis was a multilevel model with the dependent variable of 90-day mortality and hospital as a random effect, controlling for preexisting comorbid conditions, demographics, and other medications prescribed.</p> <p>Results</p> <p>We identified 11,212 subjects with a mean age of 74.0 years, 98% were male, and 12.4% of subjects died within 90-days of hospital presentation. In this cohort, 20.3% of subjects were using statins, 32.0% were using ACE inhibitors or angiotensin II receptor blockers (ARB). After adjusting for potential confounders, current statin use (odds ratio 0.51, 95% confidence interval 0.40–0.64) and ACE inhibitor/ARB use (0.55, 0.46–0.66) were significantly associated with decreased 90-day mortality.</p> <p>Conclusion</p> <p>Use of statins and ACE inhibitors prior to admission is associated with decreased mortality in subjects hospitalized with a COPD exacerbation. Randomized controlled trials are needed to examine whether the use of these medications are protective for those patients with COPD exacerbations.</p

    Cytotoxic T cells expressing the co-stimulatory receptor NKG2 D are increased in cigarette smoking and COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A suggested role for T cells in COPD pathogenesis is based on associations between increased lung cytotoxic T lymphocyte (CD8<sup>+</sup>) numbers and airflow limitation. CD69 is an early T cell activation marker. Natural Killer cell group 2 D (NKG2D) receptors are co-stimulatory molecules induced on CD8<sup>+ </sup>T cells upon activation. The activating function of NKG2 D is triggered by binding to MHC class 1 chain-related (MIC) molecules A and B, expressed on surface of stressed epithelial cells. The aim of this study was to evaluate the expression of MIC A and B in the bronchial epithelium and NKG2 D and CD69 on BAL lymphocytes in subjects with COPD, compared to smokers with normal lung function and healthy never-smokers.</p> <p>Methods</p> <p>Bronchoscopy with airway lavages and endobronchial mucosal biopsy sampling was performed in 35 patients with COPD, 21 healthy never-smokers and 16 smokers with normal lung function. Biopsies were immunohistochemically stained and BAL lymphocyte subsets were determined using flow cytometry.</p> <p>Results</p> <p>Epithelial CD3<sup>+ </sup>lymphocytes in bronchial biopsies were increased in both smokers with normal lung function and in COPD patients, compared to never-smokers. Epithelial CD8<sup>+ </sup>lymphocyte numbers were higher in the COPD group compared to never-smoking controls. Among gated CD3<sup>+</sup>cells in BAL, the percentage of CD8<sup>+ </sup>NKG2D<sup>+ </sup>cells was enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. The percentage of CD8<sup>+ </sup>CD69<sup>+ </sup>cells and cell surface expression of CD69 were enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. No changes in the expression of MIC A or MIC B in the airway epithelium could be detected between the groups, whereas significantly decreased soluble MICB was detected in bronchial wash from smokers with normal lung function, compared to never-smokers.</p> <p>Conclusions</p> <p>In COPD, we found increased numbers of cytotoxic T cells in both bronchial epithelium and airway lumen. Further, the proportions of CD69- and NKG2D-expressing cytotoxic T cells in BAL fluid were enhanced in both subjects with COPD and smokers with normal lung function and increased expression of CD69 was found on CD8<sup>+ </sup>cells, indicating the cigarette smoke exposure-induced expansion of activated cytotoxic T cells, which potentially can respond to stressed epithelial cells.</p

    Expression of V1A and GRP receptors leads to cellular transformation and increased sensitivity to substance-P analogue-induced growth inhibition.

    Get PDF
    Small-cell lung cancer (SCLC) is a particularly aggressive cancer, which metastasises early. Despite initial sensitivity to radio- and chemo-therapy, it invariably relapses, so that the 2-year survival remains less than 5%. Neuropeptides particularly arginine vasopressin (AVP) and gastrin-releasing peptide (GRP) act as autocrine and paracrine growth factors and the expression of these and their receptors are a hallmark of the disease. Substance-P analogues including [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-substance-P (SP-D) and [Arg6,D-Trp7,9,NmePhe8]-substance-P (6-11) (SP-G) inhibit the growth of SCLC cells by modulating neuropeptide signalling. We show that GRP and V1A receptors expression leads to the development of a transformed phenotype. Addition of neuropeptide provides some protection from etoposide-induced cytotoxicity. Receptor expression also leads to an increased sensitivity to substance-P analogue-induced growth inhibition. We show that SP-D and SP-G act as biased agonists at GRP and V1A receptors causing blockade of Gq-mediated Ca2+ release while directing signalling to activate ERK via a pertussis toxin-sensitive pathway. This is the first description of biased agonism at V1A receptors. This unique pharmacology governs the antiproliferative properties of these agents and highlights their potential therapeutic potential for the treatment of SCLC and particularly in tumours, which have developed resistance to chemotherapy

    Anomaly Equations and Intersection Theory

    Full text link
    Six-dimensional supergravity theories with N=(1,0) supersymmetry must satisfy anomaly equations. These equations come from demanding the cancellation of gravitational, gauge and mixed anomalies. The anomaly equations have implications for the geometrical data of Calabi-Yau threefolds, since F-theory compactified on an elliptically fibered Calabi-Yau threefold with a section generates a consistent six-dimensional N=(1,0) supergravity theory. In this paper, we show that the anomaly equations can be summarized by three intersection theory identities. In the process we also identify the geometric counterpart of the anomaly coefficients---in particular, those of the abelian gauge groups---that govern the low-energy dynamics of the theory. We discuss the results in the context of investigating string universality in six dimensions.Comment: 29 pages + appendices, 8 figures; v2: minor corrections, references added; v3: minor corrections, reference adde
    corecore