2,177 research outputs found

    SPI-7: Salmonella’s Vi-Encoding Pathogenicity Island

    Full text link

    Intra- and Interspecies Spread of a Novel Conjugative Multidrug Resistance IncC Plasmid Coharboring blaOXA-181 and armA in a Cystic Fibrosis Patient.

    Get PDF
    A novel multidrug resistance conjugative 177,859-bp IncC plasmid pJEF1-OXA-181 coharboring the carbapenemase-coding blaOXA181 and the aminoglycoside resistance 16S rRNA methyltransferase-coding armA genes was detected in two unrelated Escherichia coli gut isolates of ST196 and ST648, as well as two ST35 Klebsiella pneumoniae gut and sputum isolates of a cystic fibrosis patient. The armA gene was located within the antimicrobial resistance island ARI-A and the blaOXA181 gene, which was preceded by IS903 and ISEcp1Δ was inserted within the transfer genes region without affecting conjugation ability. Comparative plasmid analysis with other related IncC plasmids showed the presence of blaOXA181, as well as its integration site, are thus far unique for these types of plasmids. This study illustrates the potential of a promiscuous multidrug resistance plasmid to acquire antibiotic resistance genes and to disseminate in the gut of the same host. IMPORTANCE Colocalization of carbapenemases and aminoglycoside resistance 16S rRNA methylases on a multidrug resistance conjugative plasmid poses a serious threat to public health. Here, we describe the novel IncC plasmid pJEF1-OXA-181 cocarrying blaOXA-181 and armA as well as several other antimicrobial resistance genes (ARGs) in different Enterobacterales isolates of the sputum and gut microbiota of a cystic fibrosis patient. IncC plasmids are conjugative, promiscuous elements which can incorporate accessory antimicrobial resistance islands making them key players in ARGs spread. This plasmid was thus far unique among IncC plasmids to contain a blaOXA-181 which was integrated in the transfer gene region without affecting its conjugation ability. This study highlights that new plasmids may be introduced into a hospital through different species hosted in one single patient. It further emphasizes the need of continuous surveillance of multidrug-resistant bacteria in patients at risk to avoid spread of such plasmids in the health care system

    Ongoing evolution of Chlamydia trachomatis lymphogranuloma venereum: exploring the genomic diversity of circulating strains

    Get PDF
    Epidemiología molecular; Presión selectiva; Infecciones de transmisión sexualMolecular epidemiology; Selective pressure; Sexually transmitted infectionsEpidemiologia molecular; Pressió selectiva; Infeccions de transmissió sexualLymphogranuloma venereum (LGV), the invasive infection of the sexually transmissible infection (STI) Chlamydia trachomatis , is caused by strains from the LGV biovar, most commonly represented by ompA-genotypes L2b and L2. We investigated the diversity in LGV samples across an international collection over seven years using typing and genome sequencing. LGV-positive samples (n=321) from eight countries collected between 2011 and 2017 (Spain n=97, Netherlands n=67, Switzerland n=64, Australia n=53, Sweden n=37, Hungary n=31, Czechia n=30, Slovenia n=10) were genotyped for pmpH and ompA variants. All were found to contain the 9 bp insertion in the pmpH gene, previously associated with ompA-genotype L2b. However, analysis of the ompA gene shows ompA-genotype L2b (n=83), ompA-genotype L2 (n=180) and several variants of these (n=52; 12 variant types), as well as other/mixed ompA-genotypes (n=6). To elucidate the genomic diversity, whole genome sequencing (WGS) was performed from selected samples using SureSelect target enrichment, resulting in 42 genomes, covering a diversity of ompA-genotypes and representing most of the countries sampled. A phylogeny of these data clearly shows that these ompA-genotypes derive from an ompA-genotype L2b ancestor, carrying up to eight SNPs per isolate. SNPs within ompA are overrepresented among genomic changes in these samples, each of which results in an amino acid change in the variable domains of OmpA (major outer membrane protein, MOMP). A reversion to ompA-genotype L2 with the L2b genomic backbone is commonly seen. The wide diversity of ompA-genotypes found in these recent LGV samples indicates that this gene is under immunological selection. Our results suggest that the ompA-genotype L2b genomic backbone is the dominant strain circulating and evolving particularly in men who have sex with men (MSM) populations.J.C.G. was supported by the Instituto de Salud Carlos III (Plan Estatal de I+D+ i 2013–2016), Grant PI16-01242

    Whole-genome-based characterization of Campylobacter jejuni from human patients with gastroenteritis collected over an 18 year period reveals increasing prevalence of antimicrobial resistance

    Get PDF
    Campylobacteriosis is the most common cause of acute gastrointestinal bacterial infection in Europe, with most infections linked to the consumption of contaminated food. While previous studies found an increasing rate of antimicrobial resistance (AMR) in Campylobacter spp. over the past decades, the investigation of additional clinical isolates is likely to provide novel insights into the population structure and mechanisms of virulence and drug resistance of this important human pathogen. Therefore, we combined whole-genome sequencing and antimicrobial-susceptibility testing of 340 randomly selected Campylobacter jejuni isolates from humans with gastroenteritis, collected in Switzerland over an 18 year period. In our collection, the most common multilocus sequence types (STs) were ST-257 (n=44), ST-21 (n=36) and ST-50 (n=35); the most common clonal complexes (CCs) were CC-21 (n=102), CC-257 (n=49) and CC-48 (n=33). High heterogeneity was observed among STs, with the most abundant STs recurring over the entire study period, while others were observed only sporadically. Source attribution based on ST assigned more than half of the strains to the 'generalist' category (n=188), 25  % as 'poultry specialist' (n=83), and only a few to 'ruminant specialist' (n=11) or 'wild bird' origin (n=9). The isolates displayed an increased frequency of AMR from 2003 to 2020, with the highest rates of resistance observed for ciprofloxacin and nalidixic acid (49.8 %), followed by tetracycline (36.9 %). Quinolone-resistant isolates carried chromosomal gyrA mutations T86I (99.4 %) and T86A (0.6 %), whereas tetracycline-resistant isolates carried tet(O) (79.8 %) or mosaic tetO/32/O (20.2 %) genes. A novel chromosomal cassette carrying several resistance genes, including aph(3')-III, satA and aad(6), and flanked by insertion sequence elements was detected in one isolate. Collectively, our data revealed an increasing prevalence of resistance to quinolones and tetracycline in C. jejuni isolates from Swiss patients over time, linked to clonal expansion of gyrA mutants and acquisition of the tet(O) gene. Investigation of source attribution suggests that infections are most likely related to isolates from poultry or generalist backgrounds. These findings are relevant to guide future infection prevention and control strategies

    Agrobacterium species bacteraemia, Switzerland, 2008 to 2019: A molecular epidemiological study

    Get PDF
    BACKGROUND: Agrobacterium spp. are infrequent agents of bloodstream infections linked to healthcare-associated outbreaks. However, it is unclear if outbreaks also occur across larger geographic areas. Triggered by two local clusters from putative point sources, our aim was to detect potential additional clusters in Switzerland. METHODS: We performed a nationwide descriptive study of cases in Switzerland based on a prospective surveillance system (Swiss Centre for Antibiotic Resistance, anresis.ch), from 2008 to 2019. We identified patients with Agrobacterium spp. isolated from blood cultures and used a survey to collect clinical-epidemiological information and susceptibility testing results. We performed whole genome sequencing (WGS) of available clinical isolates and determined their relatedness by single nucleotide polymorphism (SNP) variant calling analysis. RESULTS: We identified a total of 36 cases of Agrobacterium spp. from blood samples over 10 years. Beyond previously known local clusters, no new ones were identified. WGS-based typing was performed on 22 available isolates and showed no clonal relationships between newly identified isolates or to those from the known clusters, with all isolates outside these clusters being at least 50 SNPs apart. CONCLUSION AND RELEVANCE: Agrobacterium spp. bacteraemia is infrequently detected and, given that it may be healthcare-associated and stem from a point source, occurrence of multiple episodes should entail an outbreak investigation. With the help of the national antimicrobial resistance surveillance system we identified multiple clinical cases of this rare pathogen but found no evidence by WGS that suggested a nation-wide outbreak

    Agrobacterium species bacteraemia, Switzerland, 2008 to 2019: a molecular epidemiological study.

    Get PDF
    BACKGROUND Agrobacterium spp. are infrequent agents of bloodstream infections linked to healthcare-associated outbreaks. However, it is unclear if outbreaks also occur across larger geographic areas. Triggered by two local clusters from putative point sources, our aim was to detect potential additional clusters in Switzerland. METHODS We performed a nationwide descriptive study of cases in Switzerland based on a prospective surveillance system (Swiss Centre for Antibiotic Resistance, anresis.ch), from 2008 to 2019. We identified patients with Agrobacterium spp. isolated from blood cultures and used a survey to collect clinical-epidemiological information and susceptibility testing results. We performed whole genome sequencing (WGS) of available clinical isolates and determined their relatedness by single nucleotide polymorphism (SNP) variant calling analysis. RESULTS We identified a total of 36 cases of Agrobacterium spp. from blood samples over 10 years. Beyond previously known local clusters, no new ones were identified. WGS-based typing was performed on 22 available isolates and showed no clonal relationships between newly identified isolates or to those from the known clusters, with all isolates outside these clusters being at least 50 SNPs apart. CONCLUSION AND RELEVANCE Agrobacterium spp. bacteraemia is infrequently detected and, given that it may be healthcare-associated and stem from a point source, occurrence of multiple episodes should entail an outbreak investigation. With the help of the national antimicrobial resistance surveillance system we identified multiple clinical cases of this rare pathogen but found no evidence by WGS that suggested a nation-wide outbreak

    Clinical bioinformatics for microbial genomics and metagenomics:an ESCMID Postgraduate Technical Workshop

    Get PDF
    The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) workshop on genomics and metagenomics was held in Lausanne from 9th to 12th September 2019. As many as 68 participants from 20 countries from all 5 continents participated to this postgraduate technical workshop. During 4 days, the participants shared their time between conferences on various topics related to the implementation of genomics and metagenomics in a clinical diagnostic laboratory. These included talks from the clinics and talks from bioinformatic experts. A significant time was also dedicated to practicals covering various aspects of the data analysis of NGS sequences (quality check, annotation of virulence and antibiotic resistance genes, taxonomic assignment of amplicons, strain typing, …). This ESCMID meeting co-organized by A Lebrand and G Greub, with the help of the European Study Group for Genomics ad Molecular Diagnostics (ESGMD) provided a unique opportunity to exchange knowledge and ideas on the most recent bioinformatic approaches, as well as how to report such NGS results in diagnostic laboratories. This meeting report summarizes the key messages of this meeting

    PorinPredict: In Silico Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance

    Get PDF
    The increasing integration of genomics into routine clinical diagnostics requires reliable computational tools to identify determinants of antimicrobial resistance (AMR) from whole-genome sequencing data. Here, we developed PorinPredict, a bioinformatic tool that predicts defects of the Pseudomonas aeruginosa outer membrane porin OprD, which are strongly associated with reduced carbapenem susceptibility. PorinPredict relies on a database of intact OprD variants and reports inactivating mutations in the coding or promoter region. PorinPredict was validated against 987 carbapenemase-negative P. aeruginosa genomes, of which OprD loss was predicted for 454 out of 522 (87.0%) meropenem-nonsusceptible and 46 out of 465 (9.9%) meropenem-susceptible isolates. OprD loss was also found to be common among carbapenemase-producing isolates, resulting in even further increased MICs. Chromosomal mutations in quinolone resistance-determining regions and OprD loss commonly co-occurred, likely reflecting the restricted use of carbapenems for multidrug-resistant infections as recommended in antimicrobial stewardship programs. In combination with available AMR gene detection tools, PorinPredict provides a robust and standardized approach to link P. aeruginosa phenotypes to genotypes. IMPORTANCE Pseudomonas aeruginosa is a major cause of multidrug-resistant nosocomial infections. The emergence and spread of clones exhibiting resistance to carbapenems, a class of critical last-line antibiotics, is therefore closely monitored. Carbapenem resistance is frequently mediated by chromosomal mutations that lead to a defective outer membrane porin OprD. Here, we determined the genetic diversity of OprD variants across the P. aeruginosa population and developed PorinPredict, a bioinformatic tool that enables the prediction of OprD loss from whole-genome sequencing data. We show a high correlation between predicted OprD loss and meropenem nonsusceptibility irrespective of the presence of carbapenemases, which are a second widespread determinant of carbapenem resistance. Isolates with resistance determinants to other antibiotics were disproportionally affected by OprD loss, possibly due to an increased exposure to carbapenems. Integration of PorinPredict into genomic surveillance platforms will facilitate a better understanding of the clinical impact of OprD modifications and transmission dynamics of resistant clones

    Comparison of Disk Diffusion, E-Test, and Broth Microdilution Methods for Testing In Vitro Activity of Cefiderocol in Acinetobacter baumannii

    Get PDF
    The reference method for cefiderocol antimicrobial susceptibility testing is broth microdilution (BMD) with iron-depleted-Mueller-Hinton (ID-MH) medium, whereas breakpoints recommended for disk diffusion (DD) are based on MH-agar plates. We aimed to compare the performance of the commercial BMD tests ComASP (Liofilchem) and UMIC (Bruker), and DD and E-test using MH- and ID-MH-agar plates with the reference BMD method using 100 carbapenem-resistant-A. baumannii isolates. Standard BMD was performed according to the EUCAST guidelines; DD and E-test were carried out using two commercial MH-agar plates (BioMérieux and Liofilchem) and an in-house ID-MH-agar plate, while ComASP and UMIC were performed according to the manufacturer's guidelines. DD performed with the ID-MH-agar plates led to a higher categorical agreement (CA, 95.1%) with standard BMD and fewer categorization errors compared to the commercial MH-agar plates (CA BioMérieux 91.1%, Liofilchem 89.2%). E-test on ID-MH-agar plates exhibited a significantly higher essential agreement (EA, 75%) with standard BMD compared to the two MH-agar plates (EA BioMérieux 57%, Liofilchem 44%), and showed a higher performance in detecting high-level resistance than ComASP and UMIC (mean log2 difference with standard BMD for resistant isolates of 0.5, 2.83, and 2.08, respectively). In conclusion, DD and E-test on ID-MH-agar plates exhibit a higher diagnostic performance than on MH-agar plates and the commercial BMD methods. Therefore, we recommend using ID-MH-agar plates for cefiderocol susceptibility testing of A. baumannii
    corecore