423 research outputs found

    The molecular evolution of the vertebrate behavioural repertoire

    Get PDF
    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations

    A Simple Artificial Life Model Explains Irrational Behavior in Human Decision-Making

    Get PDF
    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Higher-order multipole amplitudes in charmonium radiative transitions

    Full text link
    Using 24 million ψψ(2S)\psi' \equiv \psi(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions ψγχc1,2\psi' \to \gamma \chi_{c1,2} and χc1,2γJ/ψ\chi_{c1,2} \to \gamma J/\psi, in striking contrast to some previous measurements. Let b2Jb_2^J and a2Ja_2^J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript JJ refers to the angular momentum of the χcJ\chi_{cJ}. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we determine the ratios a2J=1/a2J=2=0.670.13+0.19a_2^{J=1}/a_2^{J=2} = 0.67^{+0.19}_{-0.13} and a2J=1/b2J=1=2.270.99+0.57a_2^{J=1}/b_2^{J=1} = -2.27^{+0.57}_{-0.99}, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676±0.071a_2^{J=1}/a_2^{J=2} = 0.676 \pm 0.071 and a2J=1/b2J=1=2.27±0.16a_2^{J=1}/b_2^{J=1} = -2.27 \pm 0.16.Comment: 32 pages, 7 figures, acceptance updat

    Dalitz Plot Analysis of Ds to K+K-pi+

    Full text link
    We perform a Dalitz plot analysis of the decay Ds to K+K-pi+ with the CLEO-c data set of 586/pb of e+e- collisions accumulated at sqrt(s) = 4.17 GeV. This corresponds to about 0.57 million D_s+D_s(*)- pairs from which we select 14400 candidates with a background of roughly 15%. In contrast to previous measurements we find good agreement with our data only by including an additional f_0(1370)pi+ contribution. We measure the magnitude, phase, and fit fraction of K*(892) K+, phi(1020)pi+, K0*(1430)K+, f_0(980)pi+, f_0(1710)pi+, and f_0(1370)pi+ contributions and limit the possible contributions of other KK and Kpi resonances that could appear in this decay.Comment: 21 Pages,available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Search for D0 to p e- and D0 to pbar e+

    Full text link
    Using data recorded by CLEO-c detector at CESR, we search for simultaneous baryon and lepton number violating decays of the D^0 meson, specifically, D^0 --> p-bar e^+, D^0-bar --> p-bar e^+, D^0 --> p e^- and D^0-bar --> p e^-. We set the following branching fraction upper limits: D^0 --> p-bar e^+ (D^0-bar --> p-bar e^+) p e^- (D^0-bar --> p e^-) < 1.2 * 10^{-5}, both at 90% confidence level.Comment: 10 pages, available through http://www.lns.cornell.edu/public/CLNS/, submitted to PRD. Comments: changed abstract, added reference for section 1, vertical axis in Fig.5 changed (starts from 1.5 rather than 2.0), fixed typo

    Charmonium decays to gamma pi0, gamma eta, and gamma eta'

    Full text link
    Using data acquired with the CLEO-c detector at the CESR e+e- collider, we measure branching fractions for J/psi, psi(2S), and psi(3770) decays to gamma pi0, gamma eta, and gamma eta'. Defining R_n = B[ psi(nS)-->gamma eta ]/B[ psi(nS)-->gamma eta' ], we obtain R_1 = (21.1 +- 0.9)% and, unexpectedly, an order of magnitude smaller limit, R_2 < 1.8% at 90% C.L. We also use J/psi-->gamma eta' events to determine branching fractions of improved precision for the five most copious eta' decay modes.Comment: 14 pages, available through http://www.lns.cornell.edu/public/CLNS/, published in Physical Review

    Precision Measurement of the Mass of the h_c(1P1) State of Charmonium

    Full text link
    A precision measurement of the mass of the h_c(1P1) state of charmonium has been made using a sample of 24.5 million psi(2S) events produced in e+e- annihilation at CESR. The reaction used was psi(2S) -> pi0 h_c, pi0 -> gamma gamma, h_c -> gamma eta_c, and the reaction products were detected in the CLEO-c detector. Data have been analyzed both for the inclusive reaction and for the exclusive reactions in which eta_c decays are reconstructed in fifteen hadronic decay channels. Consistent results are obtained in the two analyses. The averaged results of the present measurements are M(h_c)=3525.28+-0.19 (stat)+-0.12(syst) MeV, and B(psi(2S) -> pi0 h_c)xB(h_c -> gamma eta_c)= (4.19+-0.32+-0.45)x10^-4. Using the 3PJ centroid mass, Delta M_hf(1P)= - M(h_c) = +0.02+-0.19+-0.13 MeV.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Precision Measurement of B(D+ -> mu+ nu) and the Pseudoscalar Decay Constant fD+

    Full text link
    We measure the branching ratio of the purely leptonic decay of the D+ meson with unprecedented precision as B(D+ -> mu+ nu) = (3.82 +/- 0.32 +/- 0.09)x10^(-4), using 818/pb of data taken on the psi(3770) resonance with the CLEO-c detector at the CESR collider. We use this determination to derive a value for the pseudoscalar decay constant fD+, combining with measurements of the D+ lifetime and assuming |Vcd| = |Vus|. We find fD+ = (205.8 +/- 8.5 +/- 2.5) MeV. The decay rate asymmetry [B(D+ -> mu+ nu)-B(D- -> mu- nu)]/[B(D+ -> mu+ nu)+B(D- -> mu- nu)] = 0.08 +/- 0.08, consistent with no CP violation. We also set 90% confidence level upper limits on B(D+ -> tau+ nu) < 1.2x10^(-3) and B(D+ -> e+ nu) < 8.8x10^(-6).Comment: 24 pages, 11 figures and 6 tables, v2 replaced some figure vertical axis scales, v3 corrections from PRD revie

    Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay

    Full text link
    Using a sample of tagged D_s decays collected near the D^*_s D_s peak production energy in e+e- collisions with the CLEO-c detector, we study the leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %, where the first error is statistical and the second systematic. Combining this result with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau (via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = (274 +- 10 +- 5) MeV.Comment: 9 pages, postscript also available through http://www.lns.cornell.edu/public/CLNS/2007/, revise
    corecore