58 research outputs found

    Nanoplasmonic Colloidal Suspensions for the Enhancement of the Single Walled Carbon Nanotubes Luminescent Emission

    Get PDF
    Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube

    Carbon nanotubes for the optical far-field readout of processes that are mediated by plasmonic near-fields

    Get PDF
    As science progresses at the nanoscopic level, it becomes more and more important to comprehend the interactions taking place at the nanoscale, where optical near-fields play a key role. Their phenomenology differs significantly from the propagative light we experience at the macroscopic level. This is particularly important in applications such as surface-enhanced spectroscopies for single-molecule detection, where often the optimization of the plasmonic structures and surfaces relies on far-field characterizations. The processes dominating in the far-field picture, though, are not the same dominating in the near-field. To highlight this, we resort to very simple metallic systems: isolated gold nanorods in solution. We show how single-walled nanotubes can be exploited to read out processes occurring at the near-field level around metallic nanoparticles and make the information accessible in the far-field region. This is implemented by monitoring the spectral profile of the enhancement of the photoluminescence and Raman signal of the nanotubes for several excitation wavelengths. Through this excitation-resolved study, we show that the far-field optical readout detects the transversal and longitudinal dipolar plasmonic oscillations of gold nanorods, whereas the near-field readout through the nanotubes reveals other mechanisms to dominate. The spectral position of the maximum enhancement of the optical near-field mediated signals are located elsewhere than the far-field bands. This dichotomy between near-field and far-field response should be taken into account when optimizing plasmonic nanostructures for applications such as surface-enhanced spectroscopies

    Carbon nanotubes for the optical far-field readout of processes that are mediated by plasmonic near-fields

    Get PDF
    As science progresses at the nanoscopic level, it becomes more and more important to comprehend the interactions taking place at the nanoscale, where optical near-fields play a key role. Their phenomenology differs significantly from the propagative light we experience at the macroscopic level. This is particularly important in applications such as surface-enhanced spectroscopies for single-molecule detection, where often the optimization of the plasmonic structures and surfaces relies on far-field characterizations. The processes dominating in the far-field picture, though, are not the same dominating in the near-field. To highlight this, we resort to very simple metallic systems: isolated gold nanorods in solution. We show how single-walled nanotubes can be exploited to read out processes occurring at the near-field level around metallic nanoparticles and make the information accessible in the far-field region. This is implemented by monitoring the spectral profile of the enhancement of the photoluminescence and Raman signal of the nanotubes for several excitation wavelengths. Through this excitation-resolved study, we show that the far-field optical readout detects the transversal and longitudinal dipolar plasmonic oscillations of gold nanorods, whereas the near-field readout through the nanotubes reveals other mechanisms to dominate. The spectral position of the maximum enhancement of the optical near-field mediated signals are located elsewhere than the far-field bands. This dichotomy between near-field and far-field response should be taken into account when optimizing plasmonic nanostructures for applications such as surface-enhanced spectroscopies

    Effects of Design

    Get PDF
    Surfactants are needed to create stable suspensions of carbon nanotubes. Increasingly, these surfactants are given additional functionalities, resulting in bigger and more complex molecules with several subunits. We investigate the effect of assembly of these subunits for a class of perylene- based functional surfactants. The subunits that all surfactants are based on are a perylene core, hydrophilic polyglycerol dendrons, and alkyl chains of different orientations and lengths. The assembly of these subunits affects both the molecules' performance as a surfactant and the efficiency of the energy-transfer complexes formed by the nanotube and surfactant through a π–π stacking mechanism. This results in a best practice guide for designing functional surfactants with π–π stacking cores, and affords more general insights that are applicable to non π–π stacking systems as well

    Excitation characteristics of different energy transfer in nanotube-perylene complexes

    Get PDF
    We report the properties of perylene-nanotube complexes that form efficient energy transfer systems. Most perylene-derivatives yield similar ratios between transfer and direct luminescence (0.66 ± 0.04). The photoluminescence spectra of the free compounds and the transfer complex are similar indicating that perylene and nanotubes act as separate systems. A further increase in interaction yields 40% higher transfer rates and luminescence excitation spectra that indicate a change in stacking of the perylene on the nanotube wall. All measurements are consistent with a transfer mechanism based on a dipole-dipole interaction at a distance much smaller than the Förster radius

    Controlled reversible debundling of single-walled carbon nanotubes by photo- switchable dendritic surfactants

    Get PDF
    Stimulus responsive surfactants based on dendritic glycerol azobenzene conjugates were used to solubilize and debundle single-walled carbon nanotubes in aqueous media. Their debundling property as well as their reaggregation behavior upon irradiation with light was examined and light triggered reversible bundling and precipitation are shown

    Plasmon‐Assisted Energy Transfer in Hybrid Nanosystems

    Get PDF
    While direct optical excitation of carbon nanotubes activates only the tube species strictly matching the excitation source, excitation energy transfer processes provide a single excitation channel for all the nanotubes species in a sample. The requirement of an overlap between donor emission and acceptor absorption limits the poll of donors able to trasfer their excitation to the tubes, leaving the high‐energy part of the solar spectrum excluded from such processes. Here it is shown that the grafting of small metal nanoparticles to the tubes alters those rules, enabling energy transfer process from molecules for which the standard energy transfer process is strongly suppressed. The onset of an energy transfer band in the UV/blue spectral region is demonstrated for an hybrid gold‐pyrene‐nanotube system, yielding collective emission from all the tubes present in our samples upon excitation of pyrene

    Carbon nanotubes as substrates for molecular spiropyran-based switches

    Get PDF
    We present a joint theory–experiment study investigating the excitonic absorption of spiropyran-functionalized carbon nanotubes. The functionalization is promising for engineering switches on a molecular level, since spiropyrans can be reversibly switched between two different conformations, inducing a distinguishable and measurable change of optical transition energies in the substrate nanotube. Here, we address the question of whether an optical read-out of such a molecular switch is possible. Combining density matrix and density functional theory, we first calculate the excitonic absorption of pristine and functionalized nanotubes. Depending on the switching state of the attached molecule, we observe a red-shift of transition energies by about 15 meV due to the coupling of excitons with the molecular dipole moment. Then we perform experiments measuring the absorption spectrum of functionalized carbon nanotubes for both conformations of the spiropyran molecule. We find good qualitative agreement between the theoretically predicted and experimentally measured red-shift, confirming the possibility for an optical read-out of the nanotube-based molecular switch

    Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared

    Get PDF
    The design of single-molecule photoswitchable emitters was the first milestone toward the advent of single-molecule localization microscopy, setting a new paradigm in the field of optical imaging. Several photoswitchable emitters have been developed, but they all fluoresce in the visible or far-red ranges, missing the desirable near-infrared window where biological tissues are most transparent. Moreover, photocontrol of individual emitters in the near-infrared would be highly desirable for elementary optical molecular switches or information storage elements since most communication data transfer protocols are established in this spectral range. Here, we introduce a type of hybrid nanomaterials consisting of single-wall carbon nanotubes covalently functionalized with photoswitching molecules that are used to control the intrinsic luminescence of the single nanotubes in the near-infrared (beyond 1 ÎŒm). Through the control of photoswitching, we demonstrate super-localization imaging of nanotubes unresolved by diffraction-limited microscopy

    Relaxation lifetimes of plasmonically enhanced hybrid gold-carbon nanotubes systems

    Get PDF
    Recently, we introduced a novel hybridization route for carbon nanotubes using gold nanoparticles, whose close proximity neatly enhances their radiative emission. Here we investigate the mechanisms behind the enhancement by monitoring the de-excitation dynamics of our π-hybrids through two-color pump- probe time-resolved spectroscopy. The de-excitation process reveals a fast component and a slow component. We find that the presence of gold prominently affects the fast processes, indicating a stronger influence of the gold nanoparticle on the intra-band non-radiative relaxation than on the inter-band recombination of the single-walled carbon nanotube. By evaluating the de- excitation times, we estimate the balance between near-field pumping and the faster metal-induced de-excitation contributions, proving the enhanced pumping to be the leading mechanism
    • 

    corecore