733 research outputs found

    Sulfur isotope analysis of cysteine and methionine via preparatory liquid chromatography and elemental analyzer isotope ratio mass spectrometry

    Get PDF
    Rationale: Sulfur isotope analysis of organic sulfur‐containing molecules has previously been hindered by challenging preparatory chemistry and analytical requirements for large sample sizes. The natural‐abundance sulfur isotopic compositions of the sulfur‐containing amino acids, cysteine and methionine, have therefore not yet been investigated despite potential utility in biomedicine, ecology, oceanography, biogeochemistry, and other fields. Methods: Cysteine and methionine were subjected to hot acid hydrolysis followed by quantitative oxidation in performic acid to yield cysteic acid and methionine sulfone. These stable, oxidized products were then separated by reversed‐phase high‐performance liquid chromatography (HPLC) and verified via offline liquid chromatography/mass spectrometry (LC/MS). The sulfur isotope ratios (δ³⁴S values) of purified analytes were then measured via combustion elemental analyzer coupled to isotope ratio mass spectrometry (EA/IRMS). The EA was equipped with a temperature‐ramped chromatographic column and programmable helium carrier flow rates. Results: On‐column focusing of SO2 in the EA/IRMS system, combined with reduced He carrier flow during elution, greatly improved sensitivity, allowing precise (0.1–0.3‰ 1 s.d.) δ³⁴S measurements of 1 to 10 μg sulfur. We validated that our method for purification of cysteine and methionine was negligibly fractionating using amino acid and protein standards. Proof‐of‐concept measurements of fish muscle tissue and bacteria demonstrated differences up to 4‰ between the δ³⁴S values of cysteine and methionine that can be connected to biosynthetic pathways. Conclusions: We have developed a sensitive, precise method for measuring the natural‐abundance sulfur isotopic compositions of cysteine and methionine isolated from biological samples. This capability opens up diverse applications of sulfur isotopes in amino acids and proteins, from use as a tracer in organisms and the environment, to fundamental aspects of metabolism and biosynthesis

    Measurement of intact methane isotopologues, including ^(13)CH_3D

    Get PDF
    Methane (CH_4) is both a significant greenhouse gas and resource. Its present and past cycling can be studied through measurements of concentration and/or bulk isotopic ratios (^(13)C/^(12)C, D/H, and ^(14)C/^(12)C). Currently, isotope ratios are measured by mass spectrometric analysis of H_2 and CO_2 produced from CH_4, or by spectroscopy of CH_4. However, the interpretation of bulk isotopic variations of CH_4 are often equivocal, necessitating additional tracers

    Route to Renewable PET: Reaction Pathways and Energetics of Diels–Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves

    Get PDF
    Silica molecular sieves that have the zeolite beta topology and contain framework Lewis acid centers (e.g., Zr-β, Sn-β) are useful catalysts in the Diels–Alder and dehydrative aromatization reactions between ethylene and various renewable furans for the production of biobased terephthalic acid precursors. Here, the main side products in the synthesis of methyl 4-(methoxymethyl)benzene carboxylate that are obtained by reacting ethylene with methyl 5-(methoxymethyl)-furan-2-carboxylate are identified, and an overall reaction pathway is proposed. Madon–Boudart experiments using Zr-β samples of varying Si/Zr ratios clearly indicate that there are no transport limitations to the rate of reaction for the synthesis of p-xylene from 2,5-dimethylfuran and ethylene and strongly suggest no mass transport limitations in the synthesis of methyl p-toluate from methyl 5-methyl-2-furoate and ethylene. Measured apparent activation energies for these reaction-limited systems are small (<10.5 kcal/mol), suggesting that apparent activation energies are derived from a collection of parameters and are not true activation energies for a single chemical step. In addition, 13C kinetic isotope effects (KIE) in the synthesis of MMBC and MPT measured by gas chromatography/isotope-ratio mass spectrometry in reactant-depletion experiments support the Madon–Boudart result that these systems are not transport-limited and the KIE values agree with those previously reported for Diels–Alder cycloadditions

    Neocarchean carbonate-associated sulfate records positive Δ^(33)S anomalies

    Get PDF
    Mass-independent fractionation of sulfur isotopes (reported as Δ^(33S) recorded in Archean sedimentary rocks helps to constrain the composition of Earth’s early atmosphere and the timing of the rise of oxygen ~2.4 billion years ago. Although current hypotheses predict uniformly negative Δ^(33)S for Archean seawater sulfate, this remains untested through the vast majority of Archean time.We applied x-ray absorption spectroscopy to investigate the low sulfate content of particularly well-preserved Neoarchean carbonates and mass spectrometry to measure their Δ^(33)S signatures. We report unexpected, large, widespread positive Δ^(33)S values from stratigraphic sections capturing over 70 million years and diverse depositional environments. Combined with the pyrite record, these results show that sulfate does not carry the expected negative Δ^(33)S from sulfur mass-independent fractionation in the Neoarchean atmosphere

    A Stratified Redox Model for the Ediacaran Ocean

    Get PDF
    The Ediacaran Period (635 to 542 million years ago) was a time of fundamental environmental and evolutionary change, culminating in the first appearance of macroscopic animals. Here, we present a detailed spatial and temporal record of Ediacaran ocean chemistry for the Doushantuo Formation in the Nanhua Basin, South China. We find evidence for a metastable zone of euxinic (anoxic and sulfidic) waters impinging on the continental shelf and sandwiched within ferruginous [Fe(II)-enriched] deep waters. A stratified ocean with coeval oxic, sulfidic, and ferruginous zones, favored by overall low oceanic sulfate concentrations, was maintained dynamically throughout the Ediacaran Period. Our model reconciles seemingly conflicting geochemical redox conditions proposed previously for Ediacaran deep oceans and helps to explain the patchy temporal record of early metazoan fossils

    Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid displacement across multiple time zones results in a conflict between the new cycle of light and dark and the previously entrained program of the internal circadian clock, a phenomenon known as jet lag. In humans, jet lag is often characterized by malaise, appetite loss, fatigue, disturbed sleep and performance deficit, the consequences of which are of particular concern to athletes hoping to perform optimally at an international destination. As a species renowned for its capacity for athletic performance, the consequences of jet lag are also relevant for the horse. However, the duration and severity of jet lag related circadian disruption is presently unknown in this species. We investigated the rates of re-entrainment of serum melatonin and core body temperature (BT) rhythms following an abrupt 6-h phase advance of the LD cycle in the horse.</p> <p>Methods</p> <p>Six healthy, 2 yr old mares entrained to a 12 h light/12 h dark (LD 12:12) natural photoperiod were housed in a light-proofed barn under a lighting schedule that mimicked the external LD cycle. Following baseline sampling on Day 0, an advance shift of the LD cycle was accomplished by ending the subsequent dark period 6 h early. Blood sampling for serum melatonin analysis and BT readings were taken at 3-h intervals for 24 h on alternate days for 11 days. Disturbances to the subsequent melatonin and BT 24-h rhythms were assessed using repeated measures ANOVA and analysis of Cosine curve fitting parameters.</p> <p>Results</p> <p>We demonstrate that the equine melatonin rhythm re-entrains rapidly to a 6-h phase advance of an LD12:12 photocycle. The phase shift in melatonin was fully complete on the first day of the new schedule and rhythm phase and waveform were stable thereafter. In comparison, the advance in the BT rhythm was achieved by the third day, however BT rhythm waveform, especially its mesor, was altered for many days following the LD shift.</p> <p>Conclusion</p> <p>Aside from the temperature rhythm disruption, rapid resynchronization of the melatonin rhythm suggests that the central circadian pacemaker of the horse may possess a particularly robust entrainment response. The consequences for athletic performance remain unknown.</p

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Carbon Isotope and Lipid Biomarker Stratigraphy from Organic-Rich Strata Through the Neoproterozoic Shuram Excursion in South Oman

    Get PDF
    The regulation of oxygen levels in Earth’s atmosphere and oceans is inextricably linked to the carbon cycle. Carbon isotope ratios of carbonate and sedimentary organic matter provide first order insights into the operation of the carbon cycle in the geologic past. During the Ediacaran period, the ~580 Ma ‘Shuram Excursion’ (SE) records a dramatic, systematic shift in δ^(13)C_(carbonate) values to as low as cɑ. -12‰, lasting potentially millions to tens of millions of years in duration and constitutes the largest carbon isotope excursion known in the record [1]. The extremely negative carbon isotope values in carbonate challenges our understanding of the ancient carbon cycle and is difficult to rationalise via uniform carbon cycle principles. Several hypotheses have been developed to explain this behaviour, all of which make different predictions for the abundance, structure, and isotopic composition of organic carbon through the excursion. For a direct test of these ideas, we report paired organic and inorganic stable carbon isotope ratios in addition to detailed lipid biomarker stratigraphic records from a subsurface well drilled on the eastern flank of the South Oman Salt Basin, Sultanate of Oman. This well captures thermally immature and organic-rich Nafun Group strata traversing the SE, yielding variable but primary biomarker characteristics typical of Neoproterozoic rocks from this region. Despite the high organic matter contents, the carbon isotopic compositions of carbonates do not covary with those of organic phases. Furthermore, lipid biomarker data reveal that organic matter composition and source inputs varied stratigraphically, reflecting biological community shifts in non-migrated, syngenetic organic matter deposited during this interval. Together these observations imply that carbonateorganic isotopic decoupling during the SE is not a result of mixing of fossil or exogenous carbon sources (either DOC, detrital, or migrated) with syngenetic organic matter
    corecore