19 research outputs found

    Theory of an optical dipole trap for cold atoms

    Get PDF
    The theory of an atom dipole trap composed of a focused, far red-detuned, trapping laser beam, and a pair of red-detuned, counterpropagating, cooling beams is developed for the simplest realistic multilevel dipole interaction scheme based on a model of a (3+5)-level atom. The description of atomic motion in the trap is based on the quantum kinetic equations for the atomic density matrix and the reduced quasiclassical kinetic equation for atomic distribution function. It is shown that when the detuning of the trapping field is much larger than the detuning of the cooling field, and with low saturation, the one-photon absorption (emission) processes responsible for the trapping potential can be well separated from the two-photon processes responsible for sub-Doppler cooling atoms in the trap. Two conditions are derived that are necessary and sufficient for stable atomic trapping. The conditions show that stable atomic trapping in the optical dipole trap can be achieved when the trapping field has no effect on the two-photon cooling process and when the cooling field does not change the structure of the trapping potential but changes only the numerical value of the trapping potential well. It is concluded that the separation of the trapping and cooling processes in a pure optical dipole trap allows one to cool trapped atoms down to a minimum temperature close to the recoil temperature, keeping simultaneously a deep potential well

    Observation of coherent backscattering of light by cold atoms

    Full text link
    Coherent backscattering (CBS) of light waves by a random medium is a signature of interference effects in multiple scattering. This effect has been studied in many systems ranging from white paint to biological tissues. Recently, we have observed CBS from a sample of laser-cooled atoms, a scattering medium with interesting new properties. In this paper we discuss various effects, which have to be taken into account for a quantitative study of coherent backscattering of light by cold atoms.Comment: 25 pages LaTex2e, 17 figures, submitted to J. Opt. B: Quant. Semicl. Op

    Calculations of collisions between cold alkaline earth atoms in a weak laser field

    Get PDF
    We calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 50 atomic linewidths to the red of the ^1S_0-^1P_1 cooling transition. We evaluate loss rate coefficients due to both radiative and nonradiative state-changing mechanisms for temperatures at and below the Doppler cooling temperature. We solve the Schrodinger equation with a complex potential to represent spontaneous decay, but also give analytic models for various limits. Vibrational structure due to molecular photoassociation is present in the trap loss spectrum. Relatively broad structure due to absorption to the Mg_2 ^1Sigma_u state occurs for detunings larger than about 10 atomic linewidths. Much sharper structure, especially evident at low temperature, occurs even at smaller detunings due to of Mg_2 ^1Pi_g absorption, which is weakly allowed due to relativistic retardation corrections to the forbidden dipole transition strength. We also perform model studies for the other alkaline earth species Ca, Sr, and Ba and for Yb, and find similar qualitative behavior as for Mg.Comment: 20 pages, RevTex, 13 eps figures embedde

    Dose-Response Relationships in Expression of Biomarkers of Cell Proliferation in in vitro Assays and Inhalation Experiments

    No full text
    Asbestos is a group of naturally occurring mineral fibers which are associated in occupational settings with increased risks of malignant mesothelioma (MM), lung cancers, and pulmonary fibrosis (asbestosis). The six recognized types of asbestos fibers (chrysotile, crocidolite, amosite, tremolite, anthophyllite, and actinolite) are different chemically and physically and may have different dose-response relationships in the development of various asbestos-associated diseases. For example, epidemiologic and lung fiber content studies suggest that the pathogenic potential and durability of crocidolite is much greater than chrysotile asbestos in the causation of human MM. We have used isolated mesothelial cells, the target cells of MM, as well as epithelial cells of the lung, the target cells of lung cancers, in vitro to elucidate the dose-response relationships in expression of early response protooncogenes and other genes critical to cell proliferation and malignant transformation in cells exposed to crocidolite and chrysotile asbestos, as well as a number of nonpathogenic fibers and particles. These studies reveal distinct dose-response patterns with different types of asbestos, suggesting a threshold for effects of chrysotile both in in vitro studies and inhalation experiments. The different patterns of gene expression have been confirmed in lungs of rats exposed by inhalation to these types of asbestos. Experiments also suggest no observed adverse effect levels after evaluation of lung injury, inflammation, and fibrosis at lower concentrations of both types of asbestos
    corecore