25 research outputs found

    Cobotisation of ESS Cryomodule Assembly at CEA

    No full text
    International audienceThe assembly of cavity string in the clean room is a tedious work that has noisy and painful steps such as cleaning the taped holes of a part. CEA together with the company INGELIANCE has developed a cobot: a collaborative robot operated by an technician one time and repeating the action without the operator. The cobot can work anytime without any operators : therefore it is working at night reducing the assembly duration by some hours. The cobot consists of a FANUC CRX10 a 6-axis arm on an Arvis cart. At CEA, the cobot is used to blow the flange holes of the cavities and bellows. This allows to reduce the noisy steps that the technicians are exposed to. The process is also more reproducible since the cobot does always the same steps. The cobot is used on ESS cavity string to clean the coupler and cavity flanges. Our activities and results will be presented in this poster

    Investigation of BCP Parameters for Mastery of SRF Cavity Treatment

    No full text
    International audienceMastery of Standard Buffered Chemical Polishing (with mixture of hydrofluoric, nitric and phosphoric acids) is of paramount importance for the treatment of SRF resonators with complex geometry has IFMIF half-wave resonators, in order to control accurately their frequency evolution. Furthermore, strong and unexpected asymmetry in removals has recently been observed after BCP treatment of ESS-medium beta resonators. The goal of this study is to investigate accurately influence of parameters such as surface geometry and orientation, acid temperature, agitation and their coupling on the removal rate. We will also focus on the influence of by-products such has NOx on kinetics. The mixture used is HF(40%)- HNO3(65%)-H3PO4(85%) with ratio 1-1-2.4

    Conditioning of the Power Couplers for the ESS Elliptical Cavity Prototypes

    No full text
    International audienceIn the framework of the European Spallation Source (ESS), some power couplers have been designed and manufactured to supply, with RF power, the medium-beta (β=0.67) elliptical cavities of the cryomodule demonstrator. The power couplers work at 704.4 MHz and are tested up to 1.2 MW (repetition rate=14 Hz, RF pulse width close to 3.6 milliseconds). The CEA Saclay is in charge of the design, the manufacturing, the preparation and the conditioning of these power couplers. In this paper, after a general presentation of the power couplers used in the ESS LINAC and their characteristics, we give some détails about the manufacturing and then we describe the different steps of the preparation (cleaning), the assembly of the couplers on the coupling box in cleanroom, the baking of the couplers and the conditioning procedure. Finally, the experimental results obtained in travelling and standing waves on the first pairs of couplers will be shown

    Development of a test bench to prepare the assembly of the IFMIF LIPAC cavity string

    No full text
    The IFMIF LIPAc cryomodule houses eight half-wave resonators and eight solenoids which will be assembled on a support frame in clean room. Due to the short lattice defined by beam dynamics constraints, there is not much room between two elements for the operators’ hands to connect them. In order to test, optimize and validate the clean room assembly procedures and the associated tools, a test bench, consisting of a frame, a little bigger than one eight of the final support has been manufactured. In order to start the tests before the delivery of the actual key components of the cryomodule, a dummy cavity, solenoid and coupler were manufactured and will be used to perform tests outside and inside the clean room to validate the assembly procedure and the tools. The mock-up will then be used to train the operators for the assembly of the whole string

    Design, Fabrication, and Test of a 175 MHz, β = 0.18, Half Wave Resonator for the IFMIF-DONES SRF-Linac

    No full text
    International audienceThe IFMIF-DONES facility will serve as a fusion-like neutron source for the assessment of materials damage in future fusion reactors. The neutron flux will be generated by the interaction between the lithium curtain and the deuteron beam from an RF linear accelerator at 40 MeV and nominal CW current of 125 mA. The last accelerating stage is a superconducting (SRF) Linac hosting five cryomodules. This SRF-Linac is equipped of two types of 175 MHz half wave superconducting cavities (HWRs). The first type of cavities (cryomodules 1 and 2), characterized by beta equal to 0.11, have been studied and qualified in the frame of IFMIF/EVEDA project. The development of the second type of cavities (cryomodules 3, 4 and 5), with higher beta of 0.18 is presented in this paper. A prototype has been designed, fabricated and tested in a vertical cryostat at CEA. The measured quality factor at nominal accelerating field (4.5 MV/m) is 2.3 10⁹ and keeps higher than 109 up to 10 MV/m, which gives confidence in the cavity design and preparation to reach the expected performances after integration in the SRF linac

    IFMIF Resonators Development and Performance

    No full text
    International audienceThe prototype IFMIF cryomodule encloses eight superconducting 175 MHz beta 0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. One prototype HWR and the 8 cavities to be hosted in the cryomodule have been manufactured, prepared and tested. The paper describes the phases of the cavities development, including fabrication, processing, and RF resonant frequency management. We focus on the results of the RF tests which have been performed for all bare and jacketed HWRs in a vertical cryostat

    Assembly Preparation of the IFMIF SRF Cryomodule

    No full text
    International audienceThis article presents the preparation work performed by CEA for the assembly of the IFMIF Cryomodule. Before the shipping of the components to Japan many tests and trial assemblies has been realized on the CEA site of Saclay, France. The cryomodule, which is part of the Linear IFMIF Prototype Accelerator (LIPAc) under construction at Rokkasho in Japan, will be assembled there under the responsibility of F4E (Fusion for Energy) with CEA assistance. To fulfill the assembly of the cavity string, a cleanroom will be built at Rokkasho under the responsibility of QST

    SARAF-Phase 2 Low-Beta and High-Beta Superconducting Cavities Qualification

    No full text
    International audienceCEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5 mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The SCL consists in four cryomodules. The first two identical cryomodules host 6 half-wave resonator (HWR) low beta cavities (β= 0.09) at 176 MHz. The last two identical cryomodules will host 7 HWR high-beta cavities (β = 0.18) at 176 MHz. The low-beta prototypes was qualified in 2019. Low-beta series manufacturing is on-going. The high-beta prototype was first tested in 2019 but failed. A new prototype was tested in the end of 2020. This contribution will present the results of the tests for low- and high-beta SARAF cavities, series and prototypes

    Status of the High Power Couplers for ESS Elliptical Cavities

    No full text
    International audienceIn the framework of the European Spallation Source (ESS), CEA Paris-Saclay is responsible for the delivery of 30 cryomodules (9 medium beta (β = 0.67) and 21 high beta (β = 0.86) ones). Each cryomodule contains 4 elliptical cavities equipped with a radio frequency power coupler. The ESS nominal pulse is 1.1 MW maximum peak power over a width of 3.6 ms at a repetition rate of 14 Hz. The design of the couplers for medium beta and for high beta cavities is the same, except a small difference of the antenna penetration to adjust the Q_{ext}. The mass production of the 120 couplers started and all the medium beta couplers have been conditioned at room temperature. The first cryomodules equipped with the power couplers were successfully tested at high RF power and with cavities at 2K reaching the ESS nominal pulse. The main issue at the start of the series production could be fixed and it was due to bad TiN coatings that caused abnormal dielectric losses in the window. Thus, this paper deals with the TiN coating defect, presents the conditioning procedure and gives a conditioning report of these 36 couplers

    Conditioning of the First Mass Production Power Couplers for the ESS Elliptical Cavities

    No full text
    International audienceIn the framework of the European Spallation Source (ESS), CEA Paris-Saclay is in charge of the delivery of 9 medium beta (β = 0.67) and 21 high beta (β = 0.86) cryomodules. Each cryomodule is composed of 4 cavities equipped with RF (Radio Frequency) power couplers (704.42 MHz, 1.1 MW maximum peak power, repetition rate=14 Hz, RF pulse width > 3.1 ms). Ten prototype power couplers have been manufactured to validate the design and the performance. Currently the mass production of the 120 couplers started and the six first pre-series medium beta couplers have been successfully conditioned. The achievement of this milestone allowed us to launch the production of the remaining 30 medium beta couplers. This paper presents the conditioning of the pre-series couplers
    corecore