7 research outputs found
Hepatic profile analyses of tipranavir in Phase II and III clinical trials
<p>Abstract</p> <p>Background</p> <p>The risk and course of serum transaminase elevations (TEs) and clinical hepatic serious adverse event (SAE) development in ritonavir-boosted tipranavir (TPV/r) 500/200 mg BID recipients, who also received additional combination antiretroviral treatment agents in clinical trials (TPV/r-based cART), was determined.</p> <p>Methods</p> <p>Aggregated transaminase and hepatic SAE data through 96 weeks of TPV/r-based cART from five Phase IIb/III trials were analyzed. Patients were categorized by the presence or absence of underlying liver disease (+LD or -LD). Kaplan-Meier (K-M) probability estimates for time-to-first US National Institutes of Health, Division of AIDS (DAIDS) Grade 3/4 TE and clinical hepatic SAE were determined and clinical actions/outcomes evaluated. Risk factors for DAIDS Grade 3/4 TE were identified through multivariate Cox regression statistical modeling.</p> <p>Results</p> <p>Grade 3/4 TEs occurred in 144/1299 (11.1%) patients; 123/144 (85%) of these were asymptomatic; 84% of these patients only temporarily interrupted treatment or continued, with transaminase levels returning to Grade †2. At 96 weeks of study treatment, the incidence of Grade 3/4 TEs was higher among the +LD (16.8%) than among the -LD (10.1%) patients. K-M analysis revealed an incremental risk for developing DAIDS Grade 3/4 TEs; risk was greatest through 24 weeks (6.1%), and decreasing thereafter (>24-48 weeks: 3.4%, >48 weeks-72 weeks: 2.0%, >72-96 weeks: 2.2%), and higher in +LD than -LD patients at each 24-week interval. Treatment with TPV/r, co-infection with hepatitis B and/or C, DAIDS grade >1 TE and CD4<sup>+ </sup>> 200 cells/mm<sup>3 </sup>at baseline were found to be independent risk factors for development of DAIDS Grade 3/4 TE; the hazard ratios (HR) were 2.8, 2.0, 2.1 and 1.5, respectively. Four of the 144 (2.7%) patients with Grade 3/4 TEs developed hepatic SAEs; overall, 14/1299 (1.1%) patients had hepatic SAEs including six with hepatic failure (0.5%). The K-M risk of developing hepatic SAEs through 96 weeks was 1.4%; highest risk was observed during the first 24 weeks and decreased thereafter; the risk was similar between +LD and -LD patients for the first 24 weeks (0.6% and 0.5%, respectively) and was higher for +LD patients, thereafter.</p> <p>Conclusion</p> <p>Through 96 weeks of TPV/r-based cART, DAIDS Grade 3/4 TEs and hepatic SAEs occurred in approximately 11% and 1% of TPV/r patients, respectively; most (84%) had no significant clinical implications and were managed without permanent treatment discontinuation. Among the 14 patients with hepatic SAE, 6 experienced hepatic failure (0.5%); these patients had profound immunosuppression and the rate appears higher among hepatitis co-infected patients. The overall probability of experiencing a hepatic SAE in this patient cohort was 1.4% through 96 weeks of treatment. Independent risk factors for DAIDS Grade 3/4 TEs include TPV/r treatment, co-infection with hepatitis B and/or C, DAIDS grade >1 TE and CD4<sup>+ </sup>> 200 cells/mm<sup>3 </sup>at baseline.</p> <p>Trial registration</p> <p>US-NIH Trial registration number: NCT00144170</p
Recommended from our members
Liver enzymes elevation after HAART in HIV-HCV co-infection
Hepatitis C virus (HCV) co-infection is common among human immunodeficiency virus (HIV) patients. The incidence and risk factors associated with hepatotoxicity in this population after high active antiretroviral therapy (HAART) is initiated are still not well-understood. We argued to evaluate the incidence and risk factors associated with liver enzyme elevation (LEE) and their clinical significance. A retrospective chart review of patients who started HAART and had follow up at our centre for at least 1 year was undertaken. The frequency and severity of alanine aminotransferase (ALT)/aspartate aminotransferase (AST) elevation after treatment initiation were investigated and searched for clinical manifestations. Between January 1996 and March 2002, 85 HIV-HCV co-infected patients began HAART and continued follow up for at least 1 year. The incidence of severe toxicity [grades 3 + 4 LEE: >5 and >10 times the upper limit of normal (ULN) of ALT or AST] was calculated at 4% per person-years. There were no clinical manifestations of liver toxicity, and patients continued their treatment with a trend towards a decrease of their enzymes. No statistical differences in opportunistic infections or mortality were evident. The variables associated with severe hepatotoxicity were a higher baseline AST, higher international normalized ratio (INR) and lower albumin. A baseline AST < 2.1 ULN had a negative predictive value of 92% of leading to severe hepatotoxicity. In HIV-HCV co-infected patients therefore, the group at a higher risk of developing higher transaminase elevations is the one with a higher baseline AST, higher INR and lower albumin
Movement Disorders and Liver Disease
The association of movement disorders with structural or functional hepatic disease occurs in three principal scenarios: (1) combined involvement of both organ systems from a single disease entity, (2) nervous system dysfunction resulting from exposure to toxic compounds in the setting of defective hepatic clearance, or (3) hepatic and/or neurological injury secondary to exposure to exogenous drugs or toxins. An important early step in the workup of any patient with combined movement disorders and liver disease is the exclusion of Wilson's disease. Diagnostic delay remains common for this treatable disorder, and this has major implications for patient outcomes. Thereafter, a structured approach integrating variables such as age of onset, tempo of progression, nature and severity of liver involvement, movement disorder phenomenology, exposure to drugs/toxins and laboratory/neuroimaging findings is key to ensuring timely diagnosis and diseaseâspecific therapy. Herein, we provide an overview of disorders which may manifest with a combination of movement disorders and liver disease, structured under the three headings as detailed above. In each section, the most common disorders are discussed, along with important clinical pearls, suggested diagnostic workup, differential diagnoses and where appropriate, treatment considerations