174 research outputs found
Phase diagram for morphological transitions of wetting films on chemically structured substrates
Using an interface displacement model we calculate the shapes of thin
liquidlike films adsorbed on flat substrates containing a chemical stripe. We
determine the entire phase diagram of morphological phase transitions in these
films as function of temperature, undersaturation, and stripe widthComment: 15 pages, RevTeX, 7 Figure
Crystal Structures and Electronic Properties of Haloform-Intercalated C60
Using density functional methods we calculated structural and electronic
properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3
(X=Cl,Br). Both compounds are narrow band insulator materials with a gap
between valence and conduction bands larger than 1 eV. The calculated widths of
the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively.
The orbitals of the haloform molecules overlap with the orbitals of the
fullerene molecules and the p-type orbitals of halogen atoms significantly
contribute to the valence and conduction bands of C60 2CHX3. Charging with
electrons and holes turns the systems to metals. Contrary to expectation, 10 to
20 % of the charge is on the haloform molecules and is thus not completely
localized on the fullerene molecules. Calculations on different crystal
structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at
the Fermi energy are sensitive to the orientation of the haloform and C60
molecules. At a charging of three holes, which corresponds to the
superconducting phase of pure C60 and C60 2CHX3, the calculated density of
states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60
2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table
Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems
The many-body Monte Carlo method is used to evaluate the frequency dependent
conductivity and the average mobility of a system of hopping charges,
electronic or ionic on a one-dimensional chain or channel of finite length. Two
cases are considered: the chain is connected to electrodes and in the other
case the chain is confined giving zero dc conduction. The concentration of
charge is varied using a gate electrode. At low temperatures and with the
presence of an injection barrier, the mobility is an oscillatory function of
density. This is due to the phenomenon of charge density pinning. Mobility
changes occur due to the co-operative pinning and unpinning of the
distribution. At high temperatures, we find that the electron-electron
interaction reduces the mobility monotonically with density, but perhaps not as
much as one might intuitively expect because the path summation favour the
in-phase contributions to the mobility, i.e. the sequential paths in which the
carriers have to wait for the one in front to exit and so on. The carrier
interactions produce a frequency dependent mobility which is of the same order
as the change in the dc mobility with density, i.e. it is a comparably weak
effect. However, when combined with an injection barrier or intrinsic disorder,
the interactions reduce the free volume and amplify disorder by making it
non-local and this can explain the too early onset of frequency dependence in
the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review
Perennial Filter Strips Reduce Nitrate Levels in Soil and Shallow Groundwater after Grassland-to-Cropland Conversion
Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3–N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3–N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20% PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3–N concentration from 2005 to 2008. The results indicated significant increases in NO3–N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion
Fabrication of nanostructure via self-assembly of nanowires within the AAO template
The novel nanostructures are fabricated by the spatial chemical modification of nanowires within the anodic aluminum oxide (AAO) template. To make the nanowires better dispersion in the aqueous solution, the copper is first deposited to fill the dendrite structure at the bottom of template. During the process of self-assembly, the dithiol compound was used as the connector between the nanowires and nanoparticles by a self-assembly method. The nanostructures of the nano cigars and structure which is containing particles junction are characterized by transmission electron microscopy (TEM). These kinds of novel nanostructure will be the building blocks for nanoelectronic and nanophotonic devices
Wetting films on chemically heterogeneous substrates
Based on a microscopic density functional theory we investigate the
morphology of thin liquidlike wetting films adsorbed on substrates endowed with
well-defined chemical heterogeneities. As paradigmatic cases we focus on a
single chemical step and on a single stripe. In view of applications in
microfluidics the accuracy of guiding liquids by chemical microchannels is
discussed. Finally we give a general prescription of how to investigate
theoretically the wetting properties of substrates with arbitrary chemical
structures.Comment: 56 pages, RevTeX, 20 Figure
Hegemonic masculine conceptualisation in gang culture
This research sought to investigate the relationship between gang processes and differing forms of masculine expression. Three hundred and sixteen male participants, drawn from secondary schools within Cape Town, were included in the study. These schools were in areas differentially characterised by gang activity. The questionnaire included the newly devised Male Attitude Norm Inventory designed to explore hegemonic conceptualisations of masculinity. Factor analytic procedures rendered a three-factor model stressing the importance of male toughness, success and control. Through a series of t-tests for independent samples, as well as supporting qualitative data, participants from areas characterised by high gang activity were found to support these hegemonic elements to a significantly greater extent
Ultra violet sensors based on nanostructured ZnO spheres in network of nanowires: a novel approach
The ZnO nanostructures consisting of micro spheres in a network of nano wires were synthesized by direct vapor phase method. X-ray Photoelectron Spectroscopy measurements were carried out to understand the chemical nature of the sample. ZnO nanostructures exhibited band edge luminescence at 383 nm. The nanostructure based ZnO thin films were used to fabricate UV sensors. The photoresponse measurements were carried out and the responsivity was measured to be 50 mA W−1. The rise and decay time measurements were also measured
- …