27 research outputs found

    The role of ethanol oxidation during carboxydotrophic growth of clostridium autoethanogenum

    Get PDF
    The WoodLjungdahl pathway is an ancient metabolic route used by acetogenic carboxydotrophs to convert CO into acetate, and some cases ethanol. When produced, ethanol is generally seen as an end product of acetogenic metabolism, but here we show that it acts as an important intermediate and co-substrate during carboxydotrophic growth of Clostridium autoethanogenum. Depending on CO availability, C. autoethanogenum is able to rapidly switch between ethanol production and utilization, hereby optimizing its carboxydotrophic growth. The importance of the aldehyde ferredoxin:oxidoreductase (AOR) route for ethanol production in carboxydotrophic acetogens is known; however, the role of the bifunctional alcohol dehydrogenase AdhE (AldAdh) route in ethanol metabolism remains largely unclear. We show that the mutant strain C. autoethanogenum adhE1a, lacking the Ald subunit of the main bifunctional aldehyde/alcohol dehydrogenase (AdhE, CAETHG\_3747), has poor ethanol oxidation capabilities, with a negative impact on biomass yield. This indicates that the AdhAld route plays a major role in ethanol oxidation during carboxydotrophic growth, enabling subsequent energy conservation via substrate-level phosphorylation using acetate kinase. Subsequent chemostat experiments with C. autoethanogenum show that the wild type, in contrast to adhE1a, is more resilient to sudden changes in CO supply and utilizes ethanol as a temporary storage for reduction equivalents and energy during CO-abundant conditions, reserving these stored assets for more CO-limited conditions. This shows that the direction of the ethanol metabolism is very dynamic during carboxydotrophic acetogenesis and opens new insights in the central metabolism of C. autoethanogenum and similar acetogens.info:eu-repo/semantics/publishedVersio

    Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey

    Get PDF
    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans

    Occurrence of L-iduronic acid and putative D-glucuronyl C5-epimerases in prokaryotes

    Get PDF
    Glycosaminoglycans (GAGs) are polysaccharides that are typically present in a wide diversity of animal tissue. Most common GAGs are well-characterized and pharmaceutical applications exist for many of these compounds, e.g. heparin and hyaluronan. In addition, also bacterial glycosaminoglycan-like structures exist. Some of these bacterial GAGs have been characterized, but until now no bacterial GAG has been found that possesses the modifications that are characteristic for many of the animal GAGs such as sulfation and C5-epimerization. Nevertheless, the latter conversion may also occur in bacterial and archaeal GAGs, as some prokaryotic polysaccharides have been demonstrated to contain L-iduronic acid. However, experimental evidence for the enzymatic synthesis of L-iduronic acid in prokaryotes is as yet lacking. We therefore performed an in silico screen for D-glucuronyl C5-epimerases in prokaryotes. Multiple candidate C5-epimerases were found, suggesting that many more microorganisms are likely to exist possessing an L-iduronic acid residue as constituent of their cell wall polysaccharides

    Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae

    Get PDF
    Esters are essential for the flavor and aroma of fermented products, and are mainly produced by alcohol acyl transferases (AATs). A recently discovered AAT family named Eat (Ethanol acetyltransferase) contributes to ethyl acetate synthesis in yeast. However, its effect on the synthesis of other esters is unknown. In this study, the role of the Eat family in ester synthesis was compared to that of other Saccharomyces cerevisiae AATs (Atf1p, Atf2p, Eht1p, and Eeb1p) in silico and in vivo. A genomic study in a collection of industrial S. cerevisiae strains showed that variation of the primary sequence of the AATs did not correlate with ester production. Fifteen members of the EAT family from nine yeast species were overexpressed in S. cerevisiae CEN.PK2-1D and were able to increase the production of acetate and propanoate esters. The role of Eat1p was then studied in more detail in S. cerevisiae CEN.PK2-1D by deleting EAT1 in various combinations with other known S. cerevisiae AATs. Between 6 and 11 esters were produced under three cultivation conditions. Contrary to our expectations, a strain where all known AATs were disrupted could still produce, e.g., ethyl acetate and isoamyl acetate. This study has expanded our understanding of ester synthesis in yeast but also showed that some unknown ester-producing mechanisms still exist

    Carboxylic ester hydrolases from hyperthermophiles

    Get PDF
    Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification

    Damned if they do, damned if they don’t? Public sentiment towards the police during the first lockdown

    Get PDF
    Lockdowns have strained the UK model of policing by consent. Geoff Newiss and Sarah Charman (University of Portsmouth) have seen the complaints and messages of congratulation sent to one English force during the spring and summer of 2020

    Purification and Characterization of (Per)Chlorate Reductase from the Chlorate-Respiring Strain GR-1

    No full text
    Strain GR-1 is one of several recently isolated bacterial species that are able to respire by using chlorate or perchlorate as the terminal electron acceptor. The organism performs a complete reduction of chlorate or perchlorate to chloride and oxygen, with the intermediate formation of chlorite. This study describes the purification and characterization of the key enzyme of the reductive pathway, the chlorate and perchlorate reductase. A single enzyme was found to catalyze both the chlorate- and perchlorate-reducing activity. The oxygen-sensitive enzyme was located in the periplasm and had an apparent molecular mass of 420 kDa, with subunits of 95 and 40 kDa in an α(3)β(3) composition. Metal analysis showed the presence of 11 mol of iron, 1 mol of molybdenum, and 1 mol of selenium per mol of heterodimer. In accordance, quantitative electron paramagnetic resonance spectroscopy showed the presence of one [3Fe-4S] cluster and two [4Fe-4S] clusters. Furthermore, two different signals were ascribed to Mo(V). The K(m)values for perchlorate and chlorate were 27 and <5 μM, respectively. Besides perchlorate and chlorate, nitrate, iodate, and bromate were also reduced at considerable rates. The resemblance of the enzyme to nitrate reductases, formate dehydrogenases, and selenate reductase is discussed
    corecore