5 research outputs found

    Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent

    Get PDF
    Organic fraction of municipal solid waste is a type of biomass that is attractive due to its marginal cost and suitability for biogas production. The residual product of organic waste digestion is digestate, the high moisture content of which is a problem, even after mechanical dewatering, due to the significant heat requirement for drying. Hydrothermal carbonisation is a process that can potentially offer great benefits by improved mechanical dewatering and valorisation of the digestate into a better-quality solid fuel. However, such valorisation produces liquid by-product effluent rich in organic compounds. Membrane separation could be used to treat such effluent and increase the concentration of the organic compounds while at the same time facilitating the recovery of clean water in the permeate. This work presents the results of the investigation performed using polymeric membranes. The study showed that membrane separation keeps a significant fraction of organics in the retentate. Such concentration significantly increases the biomethane potential of such effluent as well as the energy that could be theoretically used for the generation of process heat using the concentrated retentate in the wet oxidation process.Web of Science284art. no. 12852

    Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing

    Get PDF
    One of the processes that can serve to valorise low-quality biomass and organic waste is hydrothermal carbonization (HTC). It is a thermochemical process that transpires in the presence of water and uses heat to convert wet feedstocks into hydrochar (the solid product of hydrothermal carbonization). In the present experimental study, an improvement consisting of an increased hydrophobic character of HTC-treated biomass is demonstrated through the presentation of enhanced mechanical dewatering at different pressures due to HTC valorisation. As part of this work’s scope, flashing-off of low-quality steam is additionally explored, allowing for the recovery of the physical enthalpy of hot hydrochar slurry. The flashing-off vapours, apart from steam, contain condensable hydrocarbons. Accordingly, a membrane system that purifies such effluent and the subsequent recovery of chemical energy from the retentate are taken into account. Moreover, the biomethane potential is calculated for the condensates, presenting the possibility for the chemical energy recovery of the condensates.Web of Science1613art. no. 510

    Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance

    Get PDF
    New regulations aimed at curbing the problem of eutrophication introduce limitations for traditional ways to use the by-product of anaerobic digestion—the digestate. Hydrothermal carbonisation (HTC) can be a viable way to valorise the digestate in an energy-efficient manner and at the same time maximise the synergy in terms of recovery of water, nutrients, followed by more efficient use of the remaining carbon. Additionally, hydrothermal treatment is a feasible way to recirculate recalcitrant process residues. Recirculation to anaerobic digestion enables recovery of a significant part of chemical energy lost in HTC by organics dissolved in the liquid effluent. Recirculating back to the HTC process can enhance nutrient recovery by making process water more acidic. However, such an effect of synergy can be exploited to its full extent only when viable separation techniques are applied to separate organic by-products of HTC and water. The results presented in this study show that using cascade membrane systems (microfiltration (MF) → ultrafiltration (UF) → nanofiltration (NF)), using polymeric membranes, can facilitate such separation. The best results were obtained by conducting sequential treatment of the liquid by-product of HTC in the following membrane sequence: MF 0.2 µm → UF PES 10 → NF NPO30P, which allowed reaching COD removal efficiency of almost 60%

    Industrial Process Description for the Recovery of Agricultural Water From Digestate

    No full text
    Currently, the reclamation and reuse of water have not reached their full potential, although more energy is needed to obtain and transport freshwater and this solution has a more serious environmental impact. Agricultural irrigation is, by far, the largest application of reclaimed water worldwide, so the proposed concept may result in the production of water that can be used, among others, for crop irrigation. This paper describes a novel installation for the recovery of the agricultural water from the digestate, along with the results of initial experiments. Currently, water is wasted, due to evaporation, in anaerobic digestion plants, as the effluent from dewatering of the digestate is discharged into lagoons. Moreover, water that stays within the interstitial space of the digestate is lost in a similar fashion. With increasing scarcity of water in rural areas, such waste should not be neglected. The study indicates that hydrothermal carbonization (HTC) enhances mechanical dewatering of the agricultural digestate and approximately 900 L of water can be recovered from one ton. Dewatered hydrochars had a lower heating value of almost 10 MJ/kg, indicating the possibility of using it as a fuel for the process. The aim of this Design Innovation Paper is to outline the newly developed concept of an installation that could enable recovery of water from, so far, the neglected resource—i.e., digestate from anaerobic digestion plants
    corecore