45 research outputs found

    Correction:Clinical and genetic characterization of chanarin-dorfman syndrome patients: first report of large deletions in the ABHD5 gene

    Get PDF
    AbstractFollowing the publication of this article [Redaelli C et al, Clinical and genetic characterization of Chanarin-Dorfman Syndrome patients: first report of large deletions in the ABHD5 gene. Orphanet J Rare Dis 2010; 5: 33.], it was clarified that the clinical follow-up of one of CDS family described in the manuscript was performed by Dr. Amalia Sertedaki and Talia Kakourou. The authorship of the article has been changed accordingly. The submitting authors would like to apologise to Amalia Sertedaki and Talia Kakourou for this error and they would like to thank Catherine Dacou-Voutetakis for underlining the problem

    Study of hypervariable regions and CpG islands in human genomic DNA

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX182597 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Drug Repurposing and DNA Damage in Cancer Treatment: Facts and Misconceptions

    No full text
    Drug repurposing appears to offer an attractive alternative in finding new anticancer agents. Their applicability seems to have multiple benefits, among which are the potential of immediate efficacy assessment in clinical trials and the existence of patient safety and tolerability evidence. Nevertheless, their effective application in terms of tumor-type targeting requires accurate knowledge of their exact mechanism of action. In this review, we present such a successful drug, namely Disulfiram (commercially known as Antabuse), and discuss its recently uncovered mode of anticancer action through DNA damage

    A human paradigm of LHX4 and NR5A1 developmental gene interaction in the pituitary gland and ovary?

    No full text
    The pituitary gland, as a nodal component of the endocrine system, is responsible for the regulation of growth, reproduction, metabolism, and homeostasis. Although pituitary formation though the hierarchical action of different transcription factors is well studied in mouse models, there is little evidence of the analogous developmental processes in humans. Herein, we present a female patient with a phenotype that includes blepharoptosis–ptosis–epicanthus syndrome and premature ovarian failure. Clinical exome sequencing revealed two heterozygous variants in two genes, LHX4 (pathogenic) and NR5A1 (VUS) genes and no mutation in FOXL2 gene. We propose a model of genetic interaction between LHX4 and NR5A1 during pituitary and ovarian development that may lead to a similar phenotype mediated by reduced FOXL2 expression. © 2022, The Author(s), under exclusive licence to European Society of Human Genetics

    Glucocorticoid signaling and epigenetic alterations in stress-related disorders

    No full text
    Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic land-scape and impact the function of genes involved in the regulation of stress response. More im-portantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Phenotype, genotype and glycaemic variability in people with activating mutations in the ABCC8 gene: response to appropriate therapy

    No full text
    AIMS: To examine the phenotypic features of people identified with ABCC8-maturity-onset diabetes of the young (MODY) who were included in the adult 'Mater MODY' cohort and to establish their response to sulfonylurea therapy. METHODS: Ten participants with activating ABCC8 mutations were phenotyped in detail. A 2-hour oral glucose tolerance test was performed to establish glycaemic tolerance, with glucose, insulin and C-peptide measurements taken at baseline and 30-min intervals. Insulin was discontinued and sulfonylurea therapy initiated after genetic diagnosis of ABCC8-MODY. A blinded continuous glucose monitoring sensor was used to establish glycaemic control on insulin vs a sulfonylurea. RESULTS: The mean age at diagnosis of diabetes was 33.8 ± 11.1 years, with fasting glucose of 18.9 ± 11.5 mmol/l and a mean (range) HbA1c of 86 (51,126) mmol/mol [10.0 (6.8,13.7)%]. Following a genetic diagnosis of ABCC8-MODY three out of four participants discontinued insulin (mean duration 10.6 ± 1.69 years) and started sulfonylurea treatment. The mean (range) HbA1c prior to genetic diagnosis was 52 (43,74) mmol/mol (6.9%) and the post-treatment change was 44 (30,57) mmol/mol (6.2%; P=0.16). Retinopathy was the most common microvascular complication in this cohort, occurring in five out of 10 participants. CONCLUSIONS: Low-dose sulfonylurea therapy resulted in stable glycaemic control and the elimination of hypoglycaemic episodes attributable to insulin therapy. The use of appropriate therapy at the early stages of diabetes may decrease the incidence of complications and reduce the risks of hypoglycaemia associated with insulin therapy

    Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy

    No full text
    Background: Maturity Onset Diabetes of the Young (MODY) constitutes a genetically and clinically heterogeneous type of monogenic diabetes. It is characterized by early onset, autosomal dominant inheritance and a defect in pancreatic β-cell insulin secretion. To date, various MODY subtypes have been reported, each one of a distinct genetic etiology. Objective: The aim of this study was to identify the molecular defects of 50 patients with MODY employing the methodology of next generation sequencing (NGS) targeted gene panel. Methods: A panel of seven MODY genes was designed and employed to screen 50 patients fulfilling the MODY diagnostic criteria. Patients with no pathogenic, likely pathogenic or uncertain significance variants detected, were further tested by multiplex ligation-dependent probe amplification (MLPA) for copy number variations (CNVs). Results: Eight different pathogenic or likely pathogenic variants were identified in eight MODY patients (diagnostic rate 16%). Five variants of uncertain significance were also detected in seven MODY patients. Five novel pathogenic and likely pathogenic variants were detected in the genes GCK; p.Cys371X, HNF1A; p.Asn402Tyr, HNF4A; p.Glu285Lys, and ABCC8; p.Met1514Thr and p.Ser1386Phe. Two de novo heterozygous deletions of the entire HNF1B gene were detected in two patients, raising the diagnostic rate to 20%. Conclusions: Although many MODY patients still remain without exact MODY type identification, the application of NGS methodology provided rapid results, increased diagnostic accuracy, and was cost-effective compared to Sanger sequencing. Accurate genetic diagnosis of the MODY subtype is important for treatment selection, disease prognosis, and family counseling. © 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Lt

    Aldosterone synthase deficiency type II: An unusual presentation of the first Greek case reported with confirmed genetic analysis

    No full text
    Objective. Aldosterone synthase deficiency (ASD) is a rare, autosomal recessive inherited disease with an overall clinical phenotype of failure to thrive, vomiting, severe dehydration, hyperkalemia, and hyponatremia. Mutations in the CYP11B2 gene encoding aldosterone synthase are responsible for the occurrence of ASD. Defects in CYP11B2 gene have only been reported in a limited number of cases worldwide. Due to this potential life-threatening risk, comprehensive hormonal investigation followed by genetic confirmation is essential for the clinical management of offsprings. Case presentation. We herein describe an unusual case of ASD type II in a neonate with faltering growth as a single presenting symptom. To our knowledge, this is the first Greek case of ASD type II reported with confirmed genetic analysis. Next generation sequencing of her DNA revealed the homozygous mutation p.T185I (ACC-ATC) (c.554C>T) (g.7757C>T) in exon 3 of the CYP11B2 gene in the neonate, inherited from both parents who were heterozygotes for the mutation. Conclusions. Physicians handling neonates with faltering growth, particularly in the initial six weeks of life, should be suspicious of mineralocorticoid insufficiency either as isolated hypoaldosteronism or in the context of congenital adrenal hyperplasia. Essential investigations should be performed and appropriate treatment should be administered promptly without awaiting for the hormonal profile results. Interpretation of the clinical picture and the hormonal profile will guide the analysis of candidate genes. Primary selective hypoaldosteronism is a rare, life threatening disease, but still with an unknown overall population impact. Thus, reporting cases with confirmed gene mutations is of major importance. © 2020 Stayroula Papailiou et al., published by Sciendo 2020

    Late diagnosis of 5alpha steroid-reductase deficiency due to IVS12A<G mutation of the SRD5A2 gene in an adolescent girl presented with primary amenorrhea

    No full text
    BACKGROUND: The clinical spectrum of 5α-reductase deficiency, caused by mutations in the SRD5A2 gene, ranges from complete female appearance of the external genitalia at birth to nearly complete male phenotype. CASE REPORT: A 14-year-old girl presented with primary amenorrhea (PA) and lack of breast development. She was 173 cm in height, had an increased amount of pubic hair and clitoromegaly (3 cm), with a 4 cm blind vaginal pouch. Gonads were palpable in the inguinal canal bilaterally and no uterus was identified on ultrasound. Chromosomal analysis showed a 46,XY karyotype. The Testosterone/DHT ratio was high (16.5) and further increased to 29.4 after stimulation with hCG, thus favouring the diagnosis of 5α-reductase deficiency. Since the issue of gender change was not considered, gonadectomy was performed followed by successful feminisation with hormonal replacement therapy. GENETIC STUDIES: Molecular analysis of the SRD5A2 gene by DNA sequencing of all 5 exons revealed the presence of the splice mutation A>G at position-2 of the acceptor site of intron 1/exon 2 (IVS1-2A>G) in homozygosity. Both non-consanguineous parents were found to be heterozygotes for this mutation. CONCLUSIONS: Although rare, SRD5A2 gene defect should be suspected in any girl presenting with PA and virilisation at puberty. The IVS1-2A>G mutation of the SRD5A2 gene predominates in Greek-Cypriot patients with 5α-reductase deficiency and very likely reflects a founder effect

    Congenital adrenal hyperplasia caused by compound heterozygosity of two novel CYP11B1 gene variants

    No full text
    Background Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by pathogenic variants in seven genes involved in the cortisol and aldosterone biosynthetic pathway. The second most common cause, 11 beta-hydroxylase deficiency (11 beta OHD), is attributed to pathogenic variants in the CYP11B1 gene encoding for the enzyme 11 beta-hydroxylase (11 beta OH). Case presentation A 13-year-old girl was referred to the pediatric endocrinologist due to a syncopal episode. She is the third child of non-consanguineous parents. She presented with premature adrenarche at the age of 6 years and menarche at the age of 12 years. On physical examination, her height was 154.5 cm and weight 50 kg, while she presented with acne, hirsutism, clitoromegaly, and normal blood pressure. Laboratory investigation revealed increased androgen levels and poor cortisol response to the ACTH stimulation test. From the family history, the mother was diagnosed with CAH at the age of 10 years and was under treatment with methylprednisolone. Previous molecular investigation of the CYP21A2 gene was negative. Due to the increased androstenedione levels in the index patient, the suspicion of 11 beta OH was raised, and she was investigated for 11-deoxycortisol, 11-deoxycorticosterone, and CYP11B1 gene pathogenic variants. The patient and her mother were found to be compound heterozygous for two novel variants of the CYP11B1 gene. Conclusion We present a case of CAH due to compound heterozygosity of two novel pathogenic variants of the CYP11B1 gene, emphasizing the importance of molecular investigation in order to confirm clinical diagnosis and allow proper genetic counseling of the family
    corecore