2 research outputs found

    Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland

    Get PDF
    Understanding the size and spatial distribution of material stocks is crucial for sustainable resource management and climate change mitigation. This study presents high-resolution maps of buildings and mobility infrastructure stocks for the United Kingdom (UK) and the Republic of Ireland (IRL) at 10 m, combining satellite-based Earth observations, OpenStreetMaps, and material intensities research. Stocks in the UK and IRL amount to 19.8 Gigatons or 279 tons/cap, predominantly aggregate, concrete and bricks, as well as various metals and timber. Building stocks per capita are surprisingly similar across medium to high population density, with only the lowest population densities having substantially larger per capita stocks. Infrastructure stocks per capita decrease with higher population density. Interestingly, for a given building stock within an area, infrastructure stocks are substantially larger in IRL than in the UK. These maps can provide useful insights for sustainable urban planning and advancing a circular economy

    Planet-compatible pathways for transitioning the chemical industry

    Get PDF
    Chemical products, such as plastics, solvents, and fertilizers, are essential for supporting modern lifestyles. Yet, producing, using, and disposing of chemicals creates adverse environmental impacts which threaten the industry’s license to operate. This study presents seven planet-compatible pathways toward 2050 employing demand-side and supply-side interventions with cumulative total investment costs of US$1.2–3.7 trillion. Resource efficiency and circularity interventions reduce global chemicals demand by 23 to 33% and are critical for mitigating risks associated with using fossil feedstocks and carbon capture and sequestration, and constraints on available biogenic and recyclate feedstocks. Replacing fossil feedstocks with biogenic/air-capture sources, shifting carbon destinations from the atmosphere to ground, and electrifying/decarbonizing energy supply for production technologies could enable net negative emissions of 0.5 GtCO2eq y−1 across non-ammonia chemicals, while still delivering essential chemical-based services to society
    corecore