4 research outputs found

    Involvement of Microbiota in Insect Physiology: Focus on B Vitamins

    No full text
    International audienceInsects are highly successful in colonizing a wide spectrum of ecological niches and in feeding on a wide diversity of diets. This is notably linked to their capacity to get from their microbiota any essential component lacking in the diet such as vitamins and amino acids. Over a century of research based on dietary analysis, antimicrobial treatment, gnotobiotic rearing, and culture-independent microbe detection progressively generated a wealth of information about the roleof the microbiota in specific aspects of insect fitness. Thanks to the recent increase in sequencing capacities, whole-genome sequencing of a number of symbionts has facilitated tracing of biosynthesis pathways, validation of experimental data and evolutionary analyses. This field of research has generated a considerable set of data in a diversity of hosts harboring specific symbionts or nonspecific microbiota members. Here, we review the current knowledge on the involvement of the microbiota in insect and tick nutrition, with a particular focus on B vitamin provision. We specifically question if there is any specificity of B vitamin provision by symbiontscompared to the redundant yet essential contribution of nonspecific microbes. We successively highlight the known aspects of microbial vitamin provision during three main life stages of invertebrates: postembryonic development, adulthood, and reproduction

    De Novo DNA Synthesis in Aedes aegypti Midgut Cells as a Complementary Strategy to Limit Dengue Viral Replication

    No full text
    Aedes aegypti is the main vector of Dengue Virus, carrying the virus during the whole mosquito life post-infection. Few mosquito fitness costs have been associated to the virus infection, thereby allowing for a swift dissemination. In order to diminish the mosquito population, public health agency use persistent chemicals with environmental impact for disease control. Most countries barely use biological controls, if at all. With the purpose of developing novel Dengue control strategies, a detailed understanding of the unexplored virus-vector interactions is urgently needed. Damage induced (through tissue injury or bacterial invasion) DNA duplication (endoreplication) has been described in insects during epithelial cells renewal. Here, we delved into the mosquito midgut tissue ability to synthesize DNA de novo; postulating that Dengue virus infection could trigger a protective endoreplication mechanism in some mosquito cells. We hypothesized that the Aedes aegypti orthologue of the Drosophila melanogaster hindsight gene (not previously annotated in Aedes aegypti transcriptome/genome) is part of the Delta-Notch pathway. The activation of this transcriptional cascade leads to genomic DNA endoreplication. The amplification of the genomic copies of specific genes ultimately limits the viral spreading during infection. Conversely, inhibiting DNA synthesis capacity, hence endoreplication, leads to a higher viral replication

    Data_Sheet_1_De Novo DNA Synthesis in Aedes aegypti Midgut Cells as a Complementary Strategy to Limit Dengue Viral Replication.xlsx

    No full text
    <p>Aedes aegypti is the main vector of Dengue Virus, carrying the virus during the whole mosquito life post-infection. Few mosquito fitness costs have been associated to the virus infection, thereby allowing for a swift dissemination. In order to diminish the mosquito population, public health agency use persistent chemicals with environmental impact for disease control. Most countries barely use biological controls, if at all. With the purpose of developing novel Dengue control strategies, a detailed understanding of the unexplored virus-vector interactions is urgently needed. Damage induced (through tissue injury or bacterial invasion) DNA duplication (endoreplication) has been described in insects during epithelial cells renewal. Here, we delved into the mosquito midgut tissue ability to synthesize DNA de novo; postulating that Dengue virus infection could trigger a protective endoreplication mechanism in some mosquito cells. We hypothesized that the Aedes aegypti orthologue of the Drosophila melanogaster hindsight gene (not previously annotated in Aedes aegypti transcriptome/genome) is part of the Delta-Notch pathway. The activation of this transcriptional cascade leads to genomic DNA endoreplication. The amplification of the genomic copies of specific genes ultimately limits the viral spreading during infection. Conversely, inhibiting DNA synthesis capacity, hence endoreplication, leads to a higher viral replication.</p
    corecore