2 research outputs found

    Hyperspectral reflectance measurements from UAS under intermittent clouds: Correcting irradiance measurements for sensor tilt

    Get PDF
    One great advantage of optical hyperspectral remote sensing from unmanned aerial systems (UAS) compared to satellite missions is the possibility to fly and collect data below clouds. The most typical scenario is flying below intermittent clouds and under turbulent conditions, which causes tilting of the platform. This study aims to advance hyperspectral imaging from UAS in most weather conditions by addressing two challenges: (i) the radiometric and spectral calibrations of miniaturized hyperspectral sensors; and (ii) tilting effects on measured downwelling irradiance. We developed a novel method to correct the downwelling irradiance data for tilting effects. It uses a hybrid approach of minimizing measured irradiance variations for constant irradiance periods and spectral unmixing, to calculate the spectral diffuse irradiance fraction for all irradiance measurements within a flight. It only requires the platform's attitude data and a standard incoming light sensor. We demonstrated the method at the Palo Verde National Park wetlands in Costa Rica, a highly biodiverse area. Our results showed that the downwelling irradiance correction method reduced systematic shifts caused by a change in flight direction of the UAS, by 87% and achieving a deviation of 2.78% relative to a on ground reference in terms of broadband irradiance. High frequency (< 3 s) irradiance variations caused by high-frequency tilting movements of the UAS were reduced by up to 71%. Our complete spectral and radiometric calibration and irradiance correction can significantly remove typical striped illumination artifacts in the surface reflectance-factor map product. The possibility of collecting precise hyperspectral reflectance-factor data from UAS under varying cloud cover makes it more operational for environmental monitoring or precision agriculture applications, being an important step in advancing hyperspectral imaging from UAS.Innovation Fund Denmark/[7048-00001B]/IFD/DinamarcaAgricultural Water Innovations in the Tropics/[]/AgWIT/CanadĂĄUniversidad de Costa Rica/[805-C0-603]/UCR/Costa RicaUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de FĂ­sic

    Wetland hydropattern and vegetation greenness predict avian populations in Palo Verde, Costa Rica

    No full text
    Many wetlands around the world that occur at the base of watersheds are under threat from land-use change, hydrological alteration, nutrient pollution, and invasive species. A relevant measure of whether the ecological character of these ecosystems has changed is the species diversity of wetland-dependent waterbirds, especially those of conservation value. Here, we evaluate the potential mechanisms controlling variability over time and space in avian species diversity of the wetlands in the Palo Verde National Park, a Ramsar Site of international importance in Costa Rica. To do so, we assessed the relative importance of several key wetland condition metrics (i.e., surface water depth, wetland extent, and vegetation greenness), and temporal fluctuations in these metrics, in predicting the abundance of five waterbirds of high conservation value as well as overall waterbird diversity over a 9-yr period. Generalized additive models revealed that mean NDVI, an indicator of vegetation greenness, combined with a metric used to evaluate temporal fluctuations in the wetland extent best predicted four of the five waterbird species of high conservation value as well as overall waterbird species richness and diversity. Black-bellied Whistling-ducks, which account for over one-half of all waterbird individuals, and all waterbird species together were better predicted by including surface water depth along with wetland extent and its fluctuations. Our calibrated species distribution model confidently quantified monthly averages of the predicted total waterbird abundances in seven of the 10 sub-wetlands making up the Ramsar Site and confirmed that the biophysical diversity of this entire wetland system is important to supporting waterbird populations both as a seasonal refuge and more permanently. This work further suggests that optimizing the timing and location of ongoing efforts to reduce invasive vegetation cover may be key to avian conservation by increasing waterbird habitat
    corecore