3 research outputs found

    Successful recovery of motile and viable boar sperm after vitrification with different methods (pearls and mini straws) using sucrose as a cryoprotectant

    Get PDF
    Vitrification of sperm by direct contact with liquid nitrogen is increasing in popularity as an alternative to conventional (slow) freezing. Although slow freezing is very challenging in boar sperm cryopreservation, this is currently the standard method used. We compared vitrification in “pearls” and in “mini straws” using the in vitro fertilization media Porcine Gamete Media with 0.3 M sucrose with the standard (slow) method used to preserve boar sperm. Both vitrification methods reduced the viability of the sperm sample more than slow freezing (42.2 ± 4.3% total motility and 71.4 ± 2.3% alive), however, both protocols allowed for the successful recovery of the sperm samples. By comparing two different methods of vitrification and two different methods of post-thaw preparation we were able to determine the optimal vitrification-thaw protocol for boar sperm. When comparing pearls and mini-straws, the smaller liquid volume associated with pearls had a positive effect on the survivability of the samples, reducing sperm DNA damage (1.2 ± 0.2% vs. 5.1 ± 0.1.7%) and preserving motility (26.15 ± 2.8% vs 9.39 ± 0.9%) after thawing. In conclusion, the pearl method was the most suitable of the vitrification techniques for use with boar sperm

    Preimplantation Genetic Testing for Aneuploidy Improves Live Birth Rates with In Vitro Produced Bovine Embryos: A Blind Retrospective Study

    Get PDF
    Approximately one million in vitro produced (IVP) cattle embryos are transferred worldwide each year as a way to improve the rates of genetic gain. The most advanced programmes also apply genomic selection at the embryonic stage by SNP genotyping and the calculation of genomic estimated breeding values (GEBVs). However, a high proportion of cattle embryos fail to establish a pregnancy. Here, we demonstrate that further interrogation of the SNP data collected for GEBVs can effectively remove aneuploid embryos from the pool, improving live births per embryo transfer (ET). Using three preimplantation genetic testing for aneuploidy (PGT-A) approaches, we assessed 1713 cattle blastocysts in a blind, retrospective analysis. Our findings indicate aneuploid embryos have a 5.8% chance of establishing a pregnancy and a 5.0% chance of given rise to a live birth. This compares to 59.6% and 46.7% for euploid embryos (p < 0.0001). PGT-A improved overall pregnancy and live birth rates by 7.5% and 5.8%, respectively (p < 0.0001). More detailed analyses revealed donor, chromosome, stage, grade, and sex-specific rates of error. Notably, we discovered a significantly higher incidence of aneuploidy in XY embryos and, as in humans, detected a preponderance of maternal meiosis I errors. Our data strongly support the use of PGT-A in cattle IVP programmes
    corecore