8 research outputs found

    TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy

    Get PDF
    Significance Alzheimer’s disease (AD) is the most common cause of dementia and is a major public health problem for which there is currently no disease-modifying treatment. There is an urgent need for greater understanding of the molecular mechanisms underlying neurodegeneration in patients to create better therapeutic options. Recently, genetic studies uncovered novel AD risk variants in the microglial receptor, triggering receptor expressed on myeloid cells 2 (TREM2). Previous studies suggested that loss of TREM2 function worsens amyloid-β (Aβ) plaque-related toxicity. In contrast, we observe TREM2 deficiency mitigates neuroinflammation and protects against brain atrophy in the context of tau pathology. These findings indicate dual roles for TREM2 and microglia in the context of amyloid versus tau pathology, which are important to consider for potential treatments targeting TREM2.</jats:p

    AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy

    Get PDF
    Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the

    Murine roseolovirus does not accelerate amyloid-β pathology and human roseoloviruses are not over-represented in Alzheimer disease brains

    Get PDF
    BACKGROUND: The role of viral infection in Alzheimer Disease (AD) pathogenesis is an area of great interest in recent years. Several studies have suggested an association between the human roseoloviruses, HHV-6 and HHV-7, and AD. Amyloid-β (Aβ) plaques are a hallmark neuropathological finding of AD and were recently proposed to have an antimicrobial function in response to infection. Identifying a causative and mechanistic role of human roseoloviruses in AD has been confounded by limitations in performing in vivo studies. Recent -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Murine roseolovirus (MRV) is a natural murine pathogen that is highly-related to the human roseoloviruses, providing an opportunity to perform well-controlled studies of the impact of roseolovirus on Aβ deposition. METHODS: We utilized the 5XFAD mouse model to test whether MRV induces Aβ deposition in vivo. We also evaluated viral load and neuropathogenesis of MRV infection. To evaluate Aβ interaction with MRV, we performed electron microscopy. RNA-sequencing of a cohort of AD brains compared to control was used to investigate the association between human roseolovirus and AD. RESULTS: We found that 5XFAD mice were susceptible to MRV infection and developed neuroinflammation. Moreover, we demonstrated that Aβ interacts with viral particles in vitro and, subsequent to this interaction, can disrupt infection. Despite this, neither peripheral nor brain infection with MRV increased or accelerated Aβ plaque formation. Moreover, -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Our RNA-sequencing analysis of a cohort of AD brains compared to controls did not show an association between roseolovirus infection and AD. CONCLUSION: Although MRV does infect the brain and cause transient neuroinflammation, our data do not support a role for murine or human roseoloviruses in the development of Aβ plaque formation and AD

    Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration

    Get PDF
    Alzheimer\u27s disease (AD) is characterized by plaques containing amyloid-β (Aβ) and neurofibrillary tangles composed of aggregated, hyperphosphorylated tau. Beyond tau and Aβ, evidence suggests that microglia play an important role in AD pathogenesis. Rare variants in the microglia-expressed triggering receptor expressed on myeloid cells 2 (TREM2) gene increase AD risk 2- to 4-fold. It is likely that these TREM2 variants increase AD risk by decreasing the response of microglia to Aβ and its local toxicity. However, neocortical Aβ pathology occurs many years before neocortical tau pathology in AD. Thus, it will be important to understand the role of TREM2 in the context of tauopathy. We investigated the impact of the AD-associated TREM2 variant (R47H) on tau-mediated neuropathology in the PS19 mouse model of tauopathy. We assessed PS19 mice expressing human TREM2CV (common variant) or human TREM2R47H. PS19-TREM2R47H mice had significantly attenuated brain atrophy and synapse loss versus PS19-TREM2CV mice. Gene expression analyses and CD68 immunostaining revealed attenuated microglial reactivity in PS19-TREM2R47H versus PS19-TREM2CV mice. There was also a decrease in phagocytosis of postsynaptic elements by microglia expressing TREM2R47H in the PS19 mice and in human AD brains. These findings suggest that impaired TREM2 signaling reduces microglia-mediated neurodegeneration in the setting of tauopathy

    Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation

    Get PDF
    The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid β (Aβ) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti-human apoE antibodies can decrease Aβ pathology in mice producing both human Aβ and apoE4, and investigated the mechanism underlying these effects. We utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4). We discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognizes human apoE4 and apoE3 and preferentially binds nonlipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also binds to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice. When delivered centrally or by peripheral injection, HAE-4 reduced Aβ deposition in APPPS1-21/APOE4 mice. Using adeno-associated virus to express 2 different full-length anti-apoE antibodies in the brain, we found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcγ receptor function. These data support the hypothesis that a primary mechanism for apoE-mediated plaque formation may be a result of apoE aggregation, as preferentially targeting apoE aggregates with therapeutic antibodies reduces Aβ pathology and may represent a selective approach to treat AD

    Astrocytic APOE4 removal confers cerebrovascular protection despite increased cerebral amyloid angiopathy

    Get PDF
    International audienceAlzheimer Disease (AD) and cerebral amyloid angiopathy (CAA) are both characterized by amyloid-β (Aβ) accumulation in the brain, although Aβ deposits mostly in the brain parenchyma in AD and in the cerebrovasculature in CAA. The presence of CAA can exacerbate clinical outcomes of AD patients by promoting spontaneous intracerebral hemorrhage and ischemia leading to CAA-associated cognitive decline. Genetically, AD and CAA share the ε4 allele of the apolipoprotein E (APOE) gene as the strongest genetic risk factor. Although tremendous efforts have focused on uncovering the role of APOE4 on parenchymal plaque pathogenesis in AD, mechanistic studies investigating the role of APOE4 on CAA are still lacking. Here, we addressed whether abolishing APOE4 generated by astrocytes, the major producers of APOE, is sufficient to ameliorate CAA and CAA-associated vessel damage. Methods We generated transgenic mice that deposited both CAA and plaques in which APOE4 expression can be selectively suppressed in astrocytes. At 2-months-of-age, a timepoint preceding CAA and plaque formation, APOE4 was removed from astrocytes of 5XFAD APOE4 knock-in mice. Mice were assessed at 10-months-of-age for Aβ plaque and CAA pathology, gliosis, and vascular integrity. Results Reducing the levels of APOE4 in astrocytes shifted the deposition of fibrillar Aβ from the brain parenchyma to the cerebrovasculature. However, despite increased CAA, astrocytic APOE4 removal reduced overall Aβ-mediated gliosis and also led to increased cerebrovascular integrity and function in vessels containing CAA. Conclusion In a mouse model of CAA, the reduction of APOE4 derived specifically from astrocytes, despite increased fibrillar Aβ deposition in the vasculature, is sufficient to reduce Aβ-mediated gliosis and cerebrovascular dysfunction. </jats:sec
    corecore