3 research outputs found

    A single events microkinetic model for hydrocracking of vacuum gas oil

    Get PDF
    International audienceThe single events microkinetic modeling approach is extended to include saturated and unsaturated cyclic molecules, in addition to straight chained paraffins. The model is successfully applied to hydrocracking (HCK) of a hydrotreated Vacuum Gas Oil (VGO) residue in a pilot plant, under industrial operating conditions, on a commercial bi-functional catalyst. The molecular composition of the VGO feed is obtained by reconstruction based on a combination of analytical data (SIMDIS, GCxGC, mass spectroscopy). The necessary extensions to the single events methodology, which has previously only been applied to much simpler reacting systems (i.e. HCK of paraffins) are detailed in this work. Feeds typically used in the petrochemical industry typically contain a far more complex mixture of hydrocarbons, including cyclic species (i.e. naphtenes & aromatics). A more complex reaction network is therefore required in order to apply a single events model to such feeds. Hydrogenation, as well as endo-and exo-cyclic reactions have been added to the well-known acyclic β-scission and PCP-isomerization reactions. A model for aromatic ring hydrogenation was included in order to be able to simulate the reduction in aromatic rings, which is an important feature of HCK units. The model was then applied to 8 mass balances with a wide range of residue conversion (20 – 90%). The single events model is shown to be capable of correctly simulate the macroscopic effluent characteristics, such as residue conversion, yield structure, and weight distribution of paraffinic, naphthenic, and aromatic compounds in the standard cuts. This validates the overall model. The single events model provides far more detail about the fundamental chemistry of the system. This is shown in a detailed analysis of the reaction kinetics. The evolution of molecule size (i.e. carbon number), number of saturated/unsaturated rings, or the ratio of branched and un-branched species can be followed along the reactor. This demonstrates the explanatory power of this type of model. Calculations are performed on the IFPEN high performance computing cluster, with parallelization via MPI (message passing interface). This was very useful in order to reduce time consuming problems especially for the parameter fitting step.

    Modeling of Hydrocracking

    No full text
    L'hydrocraquage est un procédé catalytique majeur dans la valorisation des coupes pétrolières lourdes. Il met en jeu un catalyseur bifonctionnel composé d’une phase métallique et d’une phase acide. Sur la première, ont lieu des réactions d’hydrogénation/déshydrogénation, et, sur la seconde, des réactions de protonation/déprotonation, d’isomérisation et de craquage. La modélisation joue un rôle essentiel dans la compréhension du procédé et dans son optimisation. Dans le cadre de cette thèse, elle s'effectue en deux étapes. La première étape consiste à déterminer la composition de la charge, et, la seconde repose sur le développement d’un modèle cinétique considérant l'ensemble des réactions.Actuellement puisque les techniques analytiques ne permettent pas de caractériser avec précision des charges aussi complexes, une reconstruction moléculaire est nécessaire. La méthode retenue consiste tout d’abord à établir une bibliothèque de molécules en se basant sur les résultats d’une méthode analytique développée à IFPEN, la GC-2D/HT. Puis, la charge est partagée en trois groupes en fonction de la température d’ébullition des molécules : une coupe naphta, une coupe kérosène/gazole et une coupe lourde. Pour chaque groupe une méthode de reconstruction moléculaire différente est appliquée : l’utilisation directe des résultats analytiques, la reconstruction statistique et la maximisation d’entropie respectivement. Pour le modèle cinétique, l’objectif est double. D’une part, il doit prendre en compte les réactions d’hydrogénation/déshydrogénation des molécules aromatiques intervenant sur la phase métallique du catalyseur. D’autre part pour la phase acide, la méthode retenue, qui est celle des Evènements Constitutifs couplée à la méthode des Chaînes Latérales, doit être étendue aux molécules cycliques.Finalement, le modèle permet de simuler le procédé d’hydrocraquage dans des conditions proches de celles industrielles.Hydrocracking is a catalytic cracking process converting high-boiling petroleum fractions into lower-boiling and more valuable ones. It is carried out on bifunctional catalyst combining both a metal phase and an acid phase. On the metal phase, hydrogenation/dehydrogenation reactions take place while on the acid phase, protonation/deprotonation, isomerization and cracking reactions occur. To optimize the yield of the desired products, hydrocracking modeling is essential. The developed model considers a hydrotreated feedstock composed of aromatic, naphthenic and paraffinic hydrocarbons. Its purposes are both to realize a relevant molecular reconstruction of the effluents and a kinetic model representative of the industrial context. As analytical techniques are not yet powerful enough to detect and quantify in detail all the components of the effluents, a molecular reconstruction is required. The proposed method is to create first a set of molecules thanks to analytical results provided by high-temperature two-dimensional gas chromatography. Then, depending on molecules’ boiling point, the effluents are shared into three groups: the naphtha cut, the gas oil cut and the “heavy cut”. For each of them, a particular reconstruction method is applied: direct use of analytical results, the statistical method and the entropy maximization method respectively.For the kinetic model, goals are both to introduce the aromatic and naphthenic hydrocarbons in the model and to consider the reactions on the metal and acid phases. So first, a reaction mechanism of aromatics hydrogenation/dehydrogenation has been defined and implemented. Secondly for the acid phase, the kinetic model based on the Single-Event approach associated with the Lateral Chain method has been improved to consider not only paraffinic but also naphthenic and aromatic hydrocarbons. Finally, the model allows to simulate the hydrocracking process in industrial conditions

    Modélisation de l'hydrocraquage

    No full text
    L'hydrocraquage est un procédé catalytique majeur dans la valorisation des coupes pétrolières lourdes. Il met en jeu un catalyseur bifonctionnel composé d une phase métallique et d une phase acide. Sur la première, ont lieu des réactions d hydrogénation/déshydrogénation, et, sur la seconde, des réactions de protonation/déprotonation, d isomérisation et de craquage. La modélisation joue un rôle essentiel dans la compréhension du procédé et dans son optimisation. Dans le cadre de cette thèse, elle s'effectue en deux étapes. La première étape consiste à déterminer la composition de la charge, et, la seconde repose sur le développement d un modèle cinétique considérant l'ensemble des réactions.Actuellement puisque les techniques analytiques ne permettent pas de caractériser avec précision des charges aussi complexes, une reconstruction moléculaire est nécessaire. La méthode retenue consiste tout d abord à établir une bibliothèque de molécules en se basant sur les résultats d une méthode analytique développée à IFPEN, la GC-2D/HT. Puis, la charge est partagée en trois groupes en fonction de la température d ébullition des molécules : une coupe naphta, une coupe kérosène/gazole et une coupe lourde. Pour chaque groupe une méthode de reconstruction moléculaire différente est appliquée : l utilisation directe des résultats analytiques, la reconstruction statistique et la maximisation d entropie respectivement. Pour le modèle cinétique, l objectif est double. D une part, il doit prendre en compte les réactions d hydrogénation/déshydrogénation des molécules aromatiques intervenant sur la phase métallique du catalyseur. D autre part pour la phase acide, la méthode retenue, qui est celle des Evènements Constitutifs couplée à la méthode des Chaînes Latérales, doit être étendue aux molécules cycliques.Finalement, le modèle permet de simuler le procédé d hydrocraquage dans des conditions proches de celles industrielles.Hydrocracking is a catalytic cracking process converting high-boiling petroleum fractions into lower-boiling and more valuable ones. It is carried out on bifunctional catalyst combining both a metal phase and an acid phase. On the metal phase, hydrogenation/dehydrogenation reactions take place while on the acid phase, protonation/deprotonation, isomerization and cracking reactions occur. To optimize the yield of the desired products, hydrocracking modeling is essential. The developed model considers a hydrotreated feedstock composed of aromatic, naphthenic and paraffinic hydrocarbons. Its purposes are both to realize a relevant molecular reconstruction of the effluents and a kinetic model representative of the industrial context. As analytical techniques are not yet powerful enough to detect and quantify in detail all the components of the effluents, a molecular reconstruction is required. The proposed method is to create first a set of molecules thanks to analytical results provided by high-temperature two-dimensional gas chromatography. Then, depending on molecules boiling point, the effluents are shared into three groups: the naphtha cut, the gas oil cut and the heavy cut . For each of them, a particular reconstruction method is applied: direct use of analytical results, the statistical method and the entropy maximization method respectively.For the kinetic model, goals are both to introduce the aromatic and naphthenic hydrocarbons in the model and to consider the reactions on the metal and acid phases. So first, a reaction mechanism of aromatics hydrogenation/dehydrogenation has been defined and implemented. Secondly for the acid phase, the kinetic model based on the Single-Event approach associated with the Lateral Chain method has been improved to consider not only paraffinic but also naphthenic and aromatic hydrocarbons. Finally, the model allows to simulate the hydrocracking process in industrial conditions.LYON-ENS Sciences (693872304) / SudocSudocFranceF
    corecore