69 research outputs found

    The influence of structural defects on intra-granular critical currents of bulk MgB2

    Full text link
    Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder-dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetization measurements indicate that these precipitates act as effective flux pinning centers and therefore significantly improve the intra-grain critical current density and its field dependence.Comment: 4 pages, 4 figures, to be published in IEE Transactions in Applied Superconductivit

    Microwave performance of high-density bulk MgB2

    Full text link
    We have performed microwave measurements on superconducting hot-isostatically- pressed (HIPed) bulk MgB2 using a parallel-plate resonator technique. The high density and strength of the HIPed material allowed preparation of samples with mirror-like surfaces for microwave measurements. The microwave surface resistance decreased by about 40% at 20 K when the root-mean-square surface roughness was reduced from 220 nm to 110 nm through surface-polishing and ion-milling. The surface resistance was independent of surface microwave magnetic field at least up to 4 Oe and below 30 K. We attribute this behavior, and the overall low surface resistance (~0.8 mOhms at 10 GHz and 20 K), to the high density of our samples and the absence of weak links between grains

    The degradation of MgB2 under ambient environment

    Full text link
    The superconductivities of samples prepared by several procedures were found to degrade under ambient environment. The degradation mechanism was studied by measuring the change of surface chemical composition of dense MgB2 pellets (prepared by hot isostatic pressure, HIPed) under atmospheric exposure using X-ray Photoelectron Spectroscopy (XPS). Results showed that samples with poor connectivity between grains and with smaller grain sizes degrade with time when exposed to ambient conditions. In these samples, the Tc did not change with time, but the superconducting transition became broader and the Meissner fraction decreased. In contrast, our well-sintered and the HIPed samples remained stable for several months under ambient condition. The degradation was found to be related to surface decomposition as observed by XPS. We observed the formation of oxidized Mg, primarily in the form of a Mg hydroxide, the increase of C and O contents, and the reduction of B concentration in the surface layer of MgB2 samples.Comment: 15 pages, 3 figure

    Correlated enhancement of Hc2 and Jc in carbon nanotube-doped MgB2

    Full text link
    The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wall carbon nanotubes (DWCNT) as a source of carbon in polycrystalline samples. The optimum nominal DWCNT content for increasing the critical current density, Jc is in the range 2.5-10%at depending on field and temperature. Record values of the upper critical field, Hc2(4K) = 41.9 T (with extrapolated Hc2(0) ~ 44.4 T) are reached in a bulk sample with 10%at DWCNT content. The measured Hc2 vs T in all samples are successfully described using a theoretical model for a two-gap superconductor in the dirty limit first proposed by Gurevich et al.Comment: 12 pages, 3 figure

    Angular dependent vortex pinning mechanisms in YBCO coated conductors and thin films

    Full text link
    We present a comparative study of the angular dependent critical current density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and SrTiO3 substrates. We identify three angular regimes where pinning is dominated by different types of correlated and uncorrelated defects. We show that those regimes are present in all cases, indicating that the pinning mechanisms are the same, but their extension and characteristics are sample dependent, reflecting the quantitative differences in texture and defect density. In particular, the more defective nature of the films on IBAD turns into an advantage as it results in stronger vortex pinning, demonstrating that the critical current density of the films on single crystals is not an upper limit for the performance of the IBAD coated conductors.Comment: 14 pages, 3 figures. Submitted to AP

    Nanoscale-SiC doping for enhancing Jc and Hc2 in the Superconducting MgB2

    Get PDF
    The effect of nanoscale-SiC doping of MgB2 was investigated using transport and magnetic measurements. It was found that there is a clear correlation between the critical temperature Tc, the resistivity r, the residual resistivity ratio, RRR = R(300K)/R(40K), the irreversibility field H* and the alloying state in the samples. SiC-doping introduced many nano-scale precipitates, provoking an increase of r(40K) from 1 mW-cm (RRR = 15) for the clean limit sample to 300 mW-cm (RRR = 1.75) for the SiC-doped sample, leading to significant enhancement of Hc2 and H* with only minor effect on Tc. EELS analysis revealed a number of nano-scale impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, BC and unreacted SiC in the doped sample. TEM study showed an extensive domain structure of 2-4nm domains induced by SiC doping. The Jc for the 10% nano-SiC doped sample increased substantially at all fields and temperatures compared to the undoped samples, due to the strong increase in Hc2 and H* produced by SiC doping
    corecore