34 research outputs found

    Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT2-positive perineuronal baskets

    Get PDF
    Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporter (VGLUT) types 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin gene-related peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets.Fil: Brumovsky, Pablo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Seroogy, Kim B.. University of Cincinnati; Estados UnidosFil: Lundgren, Kerstin H.. University of Cincinnati; Estados UnidosFil: Watanabe, Masahiko. Hokkaido University School of Medicine; JapónFil: Hökfelt, Tomas. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G.F.. Univeristy of Pittsburgh. School of Medicine; Estados Unido

    Expression of vesicular glutamate transporters in sensory and autonomic neurons innervating the mouse urinary bladder

    Get PDF
    Purpose: Vesicular glutamate transporters (VGLUTs), essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, the expression of VGLUTs in neurons innervating the urinary bladder has not yet been analyzed. Here, we study the presence of VGLUTs type-1, -2 and -3 (VGLUT1, VGLUT2 and VGLUT3, respectively) in mouse urinary bladder neurons. Materials and Methods: Expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide (CGRP) was analyzed by immunohistochemistry in retrogradely labeled primary afferent and autonomic neurons of BALB/C mice after injecting Fast Blue in the urinary bladder wall. To study VGLUT3, retrograde tracing of the urinary bladder was performed in transgenic mice where VGLUT3 is identified by detection of enhanced green fluorescent protein (EGFP). Results: Most urinary bladder DRG neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Coexpression with CGRP was only observed for VGLUT2. Occasional VGLUT2-immunoreactive (IR) neurons were seen in the major pelvic ganglion (MPG). Abundant VGLUT2-IR nerves were detected in the urinary bladder dome, trigone and also the urethra; VGLUT1-IR nerves were discretely present. Conclusions: We present novel data on the expression of VGLUTs in sensory and autonomic neurons innervating the mouse urinary bladder. The frequent association of VGLUT2 and CGRP in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the urinary bladder, such as discomfort and pain.Fil: Brumovsky, Pablo Rodolfo. Universidad Austral. Facultad de Ciencias Biomédicas. Laboratorio de Investigaciones Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados UnidosFil: Seal, Rebecca P.. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados UnidosFil: Lundgren, Kerstin H.. University of Cincinnati. Department of Neurology; Estados UnidosFil: Seroogy, Kim B.. University of Cincinnati. Department of Neurology; Estados UnidosFil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; JapónFil: Gebhart, G. F.. University of Pittsburgh. Department of Anesthesiology. Pittsburgh Center for Pain Research; Estados Unido

    Expression of vesicular glutamate transporters type 1 and 2 in sensory and autonomic neurons innervating the mouse colorectum

    Get PDF
    Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT(1) and VGLUT(2) , respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT(1) , VGLUT(2) , and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT(1) and VGLUT(2) , was also performed. Most colorectal DRG neurons expressed VGLUT(2) and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT(1) . VGLUT(2) -immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT(2) -IR nerves were detected in all layers of the colorectum; VGLUT(1) -IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT(2) , and to a lesser extent, VGLUT(1) ; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT(2). Altogether, our data suggests a role for VGLUT(2) in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility.Fil: Brumovsky, Pablo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Univeristy of Pittsburgh. School of Medicine; Estados Unidos. Universidad Austral; ArgentinaFil: Robinson, David R.. Univeristy of Pittsburgh. School of Medicine; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: La, Jun Ho. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Seroogy, Kim B.. No especifíca;Fil: Lundgren, Kerstin H.. No especifíca;Fil: Albers, Kathryn M.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Kiyatkin, Michael E.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Seal, Rebecca P.. No especifíca;Fil: Edwards, Robert H.. No especifíca;Fil: Watanabe, Masahiko. No especifíca;Fil: Hökfelt, Tomas. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Gebhart, G. F.. Univeristy of Pittsburgh. School of Medicine; Estados Unido

    Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease

    Get PDF
    A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses

    Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum

    Get PDF
    Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2), thyrotropin-releasing hormone (TRH), brain derived neurotrophic factor (BDNF), c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx)-1, and heme oxygenase-1 (Hmox-1). These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to provide some insight into the neuroadaptive potentials of the brain when repeatedly exposed to drugs of abuse

    Sociodemographic Differences in COVID-19 Pandemic Experiences Among Families in the United States

    Get PDF
    Few population-based studies in the US collected individual-level data from families during the COVID-19 pandemic.To examine differences in COVID-19 pandemic–related experiences in a large sociodemographically diverse sample of children and caregivers.The Environmental influences on Child Health Outcomes (ECHO) multi-cohort consortium is an ongoing study that brings together 64 individual cohorts with participants (24 757 children and 31 700 caregivers in this study) in all 50 US states and Puerto Rico. Participants who completed the ECHO COVID-19 survey between April 2020 and March 2022 were included in this cross-sectional analysis. Data were analyzed from July 2021 to September 2022.Exposures of interest were caregiver education level, child life stage (infant, preschool, middle childhood, and adolescent), and urban or rural (population <50 000) residence. Dependent variables included COVID-19 infection status and testing; disruptions to school, child care, and health care; financial hardships; and remote work. Outcomes were examined separately in logistic regression models mutually adjusted for exposures of interest and race, ethnicity, US Census division, sex, and survey administration date.Analyses included 14 646 children (mean [SD] age, 7.1 [4.4] years; 7120 [49%] female) and 13 644 caregivers (mean [SD] age, 37.6 [7.2] years; 13 381 [98%] female). Caregivers were racially (3% Asian; 16% Black; 12% multiple race; 63% White) and ethnically (19% Hispanic) diverse and comparable with the US population. Less than high school education (vs master’s degree or more) was associated with more challenges accessing COVID-19 tests (adjusted odds ratio [aOR], 1.88; 95% CI, 1.06-1.58), lower odds of working remotely (aOR, 0.04; 95% CI, 0.03-0.07), and more food access concerns (aOR, 4.14; 95% CI, 3.20-5.36). Compared with other age groups, young children (age 1 to 5 years) were least likely to receive support from schools during school closures, and their caregivers were most likely to have challenges arranging childcare and concerns about work impacts. Rural caregivers were less likely to rank health concerns (aOR, 0.77; 95% CI, 0.69-0.86) and social distancing (aOR, 0.82; 95% CI, 0.73-0.91) as top stressors compared with urban caregivers.Findings in this cohort study of US families highlighted pandemic-related burdens faced by families with lower socioeconomic status and young children. Populations more vulnerable to public health crises should be prioritized in recovery efforts and future planning

    4R-Cembranoid Improves Outcomes after 6-Hydroxydopamine Challenge in Both In vitro and In vivo Models of Parkinson's Disease

    No full text
    (1S, 2E, 4R, 6R,-7E, 11E)-2, 7, 11-cembratriene-4, 6-diol (4R) is one of the cembranoids found in tobacco leaves. Previous studies have found that 4R protected acute rat hippocampal slices against neurotoxicity induced by N-methyl-D-aspartate (NMDA) and against the toxic organophosphorus compounds paraoxon and diisopropylfluorophosphate (DFP). Furthermore, in vivo, 4R reduced the infarct size in a rodent ischemic stroke model and neurodegeneration caused by DFP. The present study expanded our previous study by focusing on the effect of 4R in Parkinson's disease (PD) and elucidating its underlying mechanisms using 6-hydroxydopamine (6-OHDA)-induced injury models. We found that 4R exhibited significant neuroprotective activity in the rat unilateral 6-OHDA-induced PD model in vivo. The therapeutic effect was evident both at morphological and behavioral levels. 4R (6 and 12 mg/kg) treatments significantly improved outcomes of 6-OHDA-induced PD in vivo as indicated by reducing forelimb asymmetry scores and corner test scores 4 weeks after injection of 6-OHDA (p < 0.05). The therapeutic effect of 4R was also reflected by decreased depletion of tyrosine hydroxylase (TH) in the striatum and substantia nigra (SN) on the side injected with 6-OHDA. TH expression was 70.3 and 62.8% of the contralateral side in striatum and SN, respectively, after 6 mg/kg 4R treatment; furthermore, it was 80.1 and 79.3% after treatment with 12 mg/kg of 4R. In the control group, it was 51.9 and 23.6% of the contralateral striatum and SN (p < 0.05). Moreover, 4R also protected differentiated neuro-2a cells from 6-OHDA-induced cytotoxicity in vitro. The activation of p-AKT and HAX-1, and inhibition of caspase-3 and endothelial inflammation, were involved in 4R-mediated protection against 6-OHDA-induced injury. In conclusion, the present study indicates that 4R shows a therapeutic effect in the rat 6-OHDA-induced PD model in vivo and in 6-OHDA-challenged neuro-2a cells in vitro

    Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord

    Get PDF
    Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4–S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6–S1 axotomy induced dramatic de novo expression of ATF3 in many L6–S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6–S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6–S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6–S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.Fil: Mccarthy, Carly Jane. Universidad Austral. Facultad de Ciencias Biomédicas; ArgentinaFil: Tomasella, María Eugenia. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Malet, Mariana. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Seroogy, Kim B.. University of Cincinnati; Estados UnidosFil: Hökfelt, Tomas. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Villar, Marcelo Jose. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gebhart, G.F.. University of Pittsburgh; Estados UnidosFil: Brumovsky, Pablo Rodolfo. University of Pittsburgh; Estados Unidos. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore