478 research outputs found
Data Package for Secondary Waste Form Down-Selection—Cast Stone
Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations and leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River
Recommended from our members
Kd Values for Agricultural and Surface Soils for Use in Hanford Site Farm, Residential, and River Shoreline Scenarios
This report provides best estimate Kd values and a minimum and maximum range of Kd values to be used for agricultural soils and Columbia River bank sediments that exist today or would exist in the future when portions of the Hanford Site are released for farming, residential, and recreational use after the U. S. Department of Energy (DOE) completes clean up of defense waste on the site. The Kd values should be used to determine the fate and transport rates of contaminants and their availability for plant and animal uptake in selected non-groundwater scenarios included in Hanford Site environmental impact statements, risk assessments and specific facility performance assessments. This report describes scenarios such as a small farm where drilling of a well inadvertently goes through buried waste and brings waste to the surface, allowing the tailings to become available for direct human exposure or incorporation into garden crops and farm animals used for food by the farm family. The Kd values recommended in this report can also be used to calculate sediment-water partitioning factors used to predict plant and animal uptake from interaction with the contaminated soil
Recommended from our members
Characterization of 200-UP-1 and 200-ZP-1 Operable Unit Aquifer Sediments and Batch Adsorption Distribution Coefficients for Contaminants of Concern--Fiscal Year 2006 Progress
A total of six core samples from 200-UP/ZP-1 OUs and two additional outcrop samples were characterized during FY2006 by PNNL. One sample (C4971) was identified as slough and not used, but the five other samples identified as intact core samples were used for further analyses. The C4977 sample is gravel-sandy silt and C4990 samples are fine-sandy silt from the Ringold formation. Although the sediments from these two boreholes have similar mineralogical composition, C4990 samples show higher values of Fe oxide content, clay/silt content, and surface area compared those in C4977. The measured Tc Kd values ranged 0–0.2 mg/L for both samples, while U(VI) Kd for C4990 (4.23 mg/L) is much higher than that for C4977 (0.76 mg/L). A key finding from the Kd measurements is that detailed sediment and pore water characterization is necessary to understand the variation in Kd values seen in the empirical batch tests. Without the ancillary characterization of the sediments and pore waters, one might form misleading interpretations of the mechanisms that control the Kd values. Thus, physical, geochemical, and hydrological characterization of the sediments and pore waters should be conducted to increase our understanding of the site-specific Kd measurements. More details for methods and results will be provided in the formal technical report in FY 2007
Recommended from our members
Secondary Waste Cast Stone Waste Form Qualification Testing Plan
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the ID
Inégalités hommes/femmes au CNRS
Profession Education, supplément au N° 136 d'avril 2004Mettre en évidence les inégalités de sexe au CNRS et montrer comment elles sont produites dans cet organisme et ses diverses instances est l'objet du présent ouvrage
Recommended from our members
Predictive calculations to assess the long-term effect of cementitious materials on the pH and solubility of uranium(VI) in a shallow land disposal environment
One proposed method of low-level radioactive waste (LLW) disposal is to mix the radioactive waste streams with cement, place the mixture in steel barrels, and dispose of the barrels in near-surface unsaturated sediments. Cement or concrete is frequently used in burial grounds, because cement porewaters are buffered at high pH values and lanthanides and actinides; are very insoluble in highly alkaline environments. Therefore, leaching of these contaminants from the combined cement/low-level radioactive waste streams will at least initially be retarded. The calculations performed in this study demonstrate that the pH of cement porewaters will be maintained at a value greater than 10 for 10,000 years under Hanford specific hydrogeochemical conditions. Ten thousand years is the period generally studied in longterm performance assessments per regulatory guidance. The concentrations of dissolved hexavalent uranium [U(VI)], the valence form of dissolved U usually present in oxidizing surface and groundwaters, are also constrained by the high pH and predicted solution compositions over the 10,000-year period, which is favorable from a long-term performance perspective
Microvascular function is impaired in ankylosing spondylitis and improves after tumour necrosis factor a blockade
Objectives: Ankylosing spondylitis (AS) is associated with increased cardiovascular morbidity and mortality. Microvascular function has been linked to several risk factors for cardiovascular disease. Inflammation in AS may cause microvascular dysfunction. To test this, we assessed microvascular function in (a) patients with AS compared to healthy controls and (b) patients with AS before and after 1 month of anti-tumour necrosis factor (TNF)alpha treatment with etanercept. Methods: A total of 15 consecutive patients with AS, who were scheduled for etanercept treatment according to the Assessment in Ankylosing Spondylitis (ASAS) group guidelines, and 12 healthy controls matched for age and sex, were recruited. Endothelium-dependent and independent vasodilatation in skin were evaluated with laser Doppler fluxmetry after iontophoresis of acetylcholine and sodium nitroprusside, respectively. Videomicroscopy was used to measure recruitment of skin capillaries after arterial occlusion. Results: Compared to healthy controls, patients with AS had impaired endothelium-dependent vasodilatation and capillary recruitment. Following anti-TNF alpha treatment, microvascular function improved significantly for endothelium-dependent vasodilatation (p = 0.03) and capillary recruitment (p = 0.006). A significant correlation was observed between changes in endothelium-dependent vasodilatation and changes in erythrocyte sedimentation rate (ESR) (r = -0.56; p = 0.03). Conclusion: Microvascular dysfunction is present in patients with AS with active disease, but improves as inflammation regresses after TNF alpha blockad
Skin microvascular vasodilatory capacity in offspring of two parents with Type 2 diabetes
Aims<br/> Microvascular dysfunction occurs in Type 2 diabetes and in subjects with fasting hyperglycaemia. It is unclear whether this dysfunction relates to dysglycaemia. This study investigated in normogylcaemic individuals whether a genetic predisposition to diabetes, or indices of insulin resistance including endothelial markers, were associated with impaired microvascular function.<br/> Methods<br/> Maximum microvascular hyperaemia to local heating of the skin was measured using laser Doppler flowmetry in 21 normoglycaemic subjects with no family history of diabetes (Group 1) and 21 normoglycaemic age, sex and body mass index-matched offspring of two parents with Type 2 diabetes (Group 2). <br/>Results<br/> Although Group 2 had normal fasting plasma glucose and glucose tolerance tests, the 120-min glucose values were significantly higher at 6.4 (5.3-6.6) mmol/l (median (25th-75th centile)) than the control group at 4.9 (4.6-5.9) mmol/l (P=0.005) and the insulinogenic index was lower at 97.1 (60.9-130.8) vs. 124.0 (97.2-177.7) (P=0.027). Skin maximum microvascular hyperaemia (Group 1: 1.56 (1.39- 1.80) vs. Group 2: 1.53 (1.30-1.98) V, P=0.99) and minimum microvascular resistance which normalizes the hyperaemia data for blood pressure (Group 1: 52.0 (43.2-67.4) vs. Group 2: 56.0 (43.7-69.6) mmHgN, P=0.70) did not differ in the two groups. Significant positive associations occurred between minimum microvascular resistance and indices of the insulin resistance syndrome; plasminogen activator inhibitor type 1 (R-s=0.46, P=0.003), t-PA (R-s=0.36, P=0.03), total cholesterol (R-s=0.35, P=0.02), and triglyceride concentration (R-s=0.35, P=0.02), and an inverse association with insulin sensitivity (R-s=-0.33, P=0.03).<br/> Conclusions<br/> In normoglycaemic adults cutaneous microvascular vasodilatory capacity is associated with features of insulin resistance syndrome, particularly with plasminogen activator inhibitor type 1. A strong family history of Type 2 diabetes alone does not result in impairment in the maximum hyperaemic response
Recommended from our members
Long-term-consequence analysis of no action alternative 2
This report is a supplement to the Waste Isolation Pilot Plant (WIPP) Disposal-Phase Supplemental Environmental Impact Statement. Data and information is described which pertains to estimated impacts from postulated long-term release of radionuclides and hazardous constituents from alpha-bearing wastes stored at major generator/storage sites after loss of institutional control (no action alternative 2). Under this alternative, wastes would remain at the generator sites and not be emplaced at WIPP
- …