81 research outputs found

    Netlang: A software for the linguistic analysis of corpora by means of complex networks

    Get PDF
    To date there is no software that directly connects the linguistic analysis of a conversation to a network program. Networks programs are able to extract statistical information from data basis with information about systems of interacting elements. Language has also been conceived and studied as a complex system. However, most proposals do not analyze language according to linguistic theory, but use instead computational systems that should save time at the price of leaving aside many crucial aspects for linguistic theory. Some approaches to network studies on language do apply precise linguistic analyses, made by a linguist. The problem until now has been the lack of interface between the analysis of a sentence and its integration into the network that could be managed by a linguist and that could save the analysis of any language. Previous works have used old software that was not created for these purposes and that often produced problems with some idiosyncrasies of the target language. The desired interface should be able to deal with the syntactic peculiarities of a particular language, the options of linguistic theory preferred by the user and the preservation of morpho-syntactic information (lexical categories and syntactic relations between items). Netlang is the first program able to do that. Recently, a new kind of linguistic analysis has been developed, which is able to extract a complexity pattern from the speaker’s linguistic production which is depicted as a network where words are inside nodes, and these nodes connect each other by means of edges or links (the information inside the edge can be syntactic, semantic, etc.). The Netlang software has become the bridge between rough linguistic data and the network program. Netlang has integrated and improved the functions of programs used in the past, namely the DGA annotator and two scripts (ToXML.pl and Xml2Pairs.py) used for transforming and pruning data. Netlang allows the researcher to make accurate linguistic analysis by means of syntactic dependency relations between words, while tracking record of the nature of such syntactic relationships (subject, object, etc). The Netlang software is presented as a new tool that solve many problems detected in the past. The most important improvement is that Netlang integrates three past applications into one program, and is able to produce a series of file formats that can be read by a network program. Through the Netlang software, the linguistic network analysis based on syntactic analyses, characterized for its low cost and the completely non-invasive procedure aims to evolve into a sufficiently fine grained tool for clinical diagnosis in potential cases of language disorders

    Study of the Very High Energy emission of M87 through its broadband spectral energy distribution

    Get PDF
    The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster.Very High Energy (VHE,0.1\gtrsim 0.1 TeV) emission, from M87 has been detectedby Imaging Air Cherenkov Telescopes (IACTs ). Recently, marginal evidence forVHE long-term emission has also been observed by the High Altitude WaterCherenkov (HAWC) Observatory, a gamma ray and cosmic-ray detector array locatedin Puebla, Mexico. The mechanism that produces VHE emission in M87 remainsunclear. This emission is originated in its prominent jet, which has beenspatially resolved from radio to X-rays. In this paper, we constructed aspectral energy distribution from radio to gamma rays that is representative ofthe non-flaring activity of the source, and in order to explain the observedemission, we fit it with a lepto-hadronic emission model. We found that thismodel is able to explain non-flaring VHE emission of M87 as well as an orphanflare reported in 2005.<br

    Searching for TeV Dark Matter in Irregular dwarf galaxies with HAWC Observatory

    Full text link
    We present the results of dark matter (DM) searches in a sample of 31 dwarf irregular (dIrr) galaxies within the field of view of the HAWC Observatory. dIrr galaxies are DM dominated objects, which astrophysical gamma-ray emission is estimated to be negligible with respect to the secondary gamma-ray flux expected by annihilation or decay of Weakly Interacting Massive Particles (WIMPs). While we do not see any statistically significant DM signal in dIrr galaxies, we present the exclusion limits (95% C.L.95\%~\text{C.L.}) for annihilation cross-section and decay lifetime for WIMP candidates with masses between 11 and 100 TeV100~\text{TeV}. Exclusion limits from dIrr galaxies are relevant and complementary to benchmark dwarf Spheroidal (dSph) galaxies. In fact, dIrr galaxies are targets kinematically different from benchmark dSph, preserving the footprints of different evolution histories. We compare the limits from dIrr galaxies to those from ultrafaint and classical dSph galaxies previously observed with HAWC. We find that the contraints are comparable to the limits from classical dSph galaxies and 2\thicksim2 orders of magnitude weaker than the ultrafaint dSph limits.Comment: 22 pages, 11 figures, 3 table

    HAWC Study of Very-High-Energy γ\gamma-ray Spectrum of HAWC J1844-034

    Full text link
    Recently, the region surrounding eHWC J1842-035 has been studied extensively by gamma-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1,910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842-035 region. During the search we have found three sources in the region, namely, HAWC J1844-034, HAWC J1843-032, and HAWC J1846-025. We have identified HAWC J1844-034 as the extended source that emits photons with energies up to 175 TeV. We compute the spectrum for HAWC J1844-034 and by comparing with the observational results from other experiments, we have identified HESS J1843-033, LHAASO J1843-0338, and TASG J1844-038 as very-high-energy gamma-ray sources with a matching origin. Also, we present and use the multi-wavelength data to fit the hadronic and leptonic particle spectra. We have identified four pulsar candidates in the nearby region from which PSR J1844-0346 is found to be the most likely candidate due to its proximity to HAWC J1844-034 and the computed energy budget. We have also found SNR G28.6-0.1 as a potential counterpart source of HAWC J1844-034 for which both leptonic and hadronic scenarios are feasible.Comment: 13 pages, 9 figures, published in Ap

    Galactic Gamma-Ray Diffuse Emission at TeV energies with HAWC Data

    Full text link
    The Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of TeV diffuse emission from a region of the Galactic Plane over the range in longitude of l[43,73]l\in[43^\circ,73^\circ], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal and latitudinal distributions of the TeV diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with an "index" similar to that of the observed CRs. When comparing with the \texttt{DRAGON} \textit{base model}, the HAWC GDE flux is higher by about a factor of two. Unresolved sources such as pulsar wind nebulae and TeV halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes

    The TeV Sun Rises: Discovery of Gamma rays from the Quiescent Sun with HAWC

    Full text link
    We report the first detection of a TeV gamma-ray flux from the solar disk (6.3σ\sigma), based on 6.1 years of data from the High Altitude Water Cherenkov (HAWC) observatory. The 0.5--2.6 TeV spectrum is well fit by a power law, dN/dE = A(E/1 TeV)γA (E/1 \text{ TeV})^{-\gamma}, with A=(1.6±0.3)×1012A = (1.6 \pm 0.3) \times 10^{-12} TeV1^{-1} cm2^{-2} s1^{-1} and γ=3.62±0.14\gamma = -3.62 \pm 0.14. The flux shows a strong indication of anticorrelation with solar activity. These results extend the bright, hard GeV emission from the disk observed with Fermi-LAT, seemingly due to hadronic Galactic cosmic rays showering on nuclei in the solar atmosphere. However, current theoretical models are unable to explain the details of how solar magnetic fields shape these interactions. HAWC's TeV detection thus deepens the mysteries of the solar-disk emission.Comment: 15 pages, 8 figures including supplementary material. Accepted for publication in Physical Review Letter

    Gamma-ray Emission from Classical Nova V392 Per: Measurements from Fermi and HAWC

    Get PDF
    This paper reports on the γ\gamma-ray properties of the 2018 Galactic novaV392 Per, spanning photon energies \sim0.1 GeV to 100 TeV by combiningobservations from the Fermi Gamma-ray Space Telescope and the HAWC Observatory.In one of the most rapidly evolving γ\gamma-ray signals yet observed for anova, GeV γ\gamma rays with a power law spectrum with index Γ=2.0±0.1\Gamma = 2.0 \pm0.1 were detected over eight days following V392 Per's optical maximum. HAWCobservations constrain the TeV γ\gamma-ray signal during this time and alsobefore and after. We observe no statistically significant evidence of TeVγ\gamma-ray emission from V392 Per, but present flux limits. Tests of theextension of the Fermi/LAT spectrum to energies above 5 TeV are disfavored by 2standard deviations (95\%) or more. We fit V392 Per's GeV γ\gamma rays withhadronic acceleration models, incorporating optical observations, and comparethe calculations with HAWC limits.<br

    Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories

    Get PDF
    Ground-based gamma-ray astronomy is still a rather young field of research,with strong historical connections to particle physics. This is why mostobservations are conducted by experiments with proprietary data and analysissoftware, as it is usual in the particle physics field. However in recentyears, this paradigm has been slowly shifting towards the development and useof open-source data formats and tools, driven by upcoming observatories such asthe Cherenkov Telescope Array (CTA). In this context, a community-driven,shared data format (the gamma-astro-data-format or GADF) and analysis toolssuch as Gammapy and ctools have been developed. So far these efforts have beenled by the IACT community, leaving out other types of ground-based gamma-rayinstruments.We aim to show that the data from ground particle arrays, such asthe High-Altitude Water Cherenkov (HAWC) observatory, is also compatible withthe GADF and can thus be fully analysed using the related tools, in this caseGammapy. We reproduce several published HAWC results using Gammapy and dataproducts compliant with GADF standard. We also illustrate the capabilities ofthe shared format and tools by producing a joint fit of the Crab spectrumincluding data from six different gamma-ray experiments. We find excellentagreement with the reference results, a powerful check of both the publishedresults and the tools involved. The data from particle detector arrays such asthe HAWC observatory can be adapted to the GADF and thus analysed with Gammapy.A common data format and shared analysis tools allow multi-instrument jointanalysis and effective data sharing. Given the complementary nature of pointingand wide-field instruments, this synergy will be distinctly beneficial for thejoint scientific exploitation of future observatories such as the SouthernWide-field Gamma-ray Observatory and CTA.<br

    Limits on the Diffuse Gamma-Ray Background above 10 TeV with HAWC

    Full text link
    The high-energy Diffuse Gamma-Ray Background (DGRB) is expected to be produced by unresolved isotropically distributed astrophysical objects, potentially including dark matter annihilation or decay emissions in galactic or extragalactic structures. The DGRB has only been observed below 1 TeV; above this energy, upper limits have been reported. Observations or stringent limits on the DGRB above this energy could have significant multi-messenger implications, such as constraining the origin of TeV-PeV astrophysical neutrinos detected by IceCube. The High Altitude Water Cherenkov (HAWC) Observatory, located in central Mexico at 4100 m above sea level, is sensitive to gamma rays from a few hundred GeV to several hundred TeV and continuously observes a wide field-of-view (2 sr). With its high-energy reach and large area coverage, HAWC is well-suited to notably improve searches for the DGRB at TeV energies. In this work, strict cuts have been applied to the HAWC dataset to better isolate gamma-ray air showers from background hadronic showers. The sensitivity to the DGRB was then verified using 535 days of Crab data and Monte Carlo simulations, leading to new limits above 10 TeV on the DGRB as well as prospective implications for multi-messenger studies.Comment: 8 pages, 3 figure

    Gamma/Hadron Separation with the HAWC Observatory

    Get PDF
    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observesatmospheric showers produced by incident gamma rays and cosmic rays with energyfrom 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-raysources using ground-based gamma-ray detectors like HAWC is to identify theshowers produced by gamma rays or hadrons. The HAWC observatory records roughly25,000 events per second, with hadrons representing the vast majority(>99.9%>99.9\%) of these events. The standard gamma/hadron separation technique inHAWC uses a simple rectangular cut involving only two parameters. This workdescribes the implementation of more sophisticated gamma/hadron separationtechniques, via machine learning methods (boosted decision trees and neuralnetworks), and summarizes the resulting improvements in gamma/hadron separationobtained in HAWC.<br
    corecore