17 research outputs found

    Maximum information divergence from linear and toric models

    Full text link
    We study the problem of maximizing information divergence from a new perspective using logarithmic Voronoi polytopes. We show that for linear models, the maximum is always achieved at the boundary of the probability simplex. For toric models, we present an algorithm that combines the combinatorics of the chamber complex with numerical algebraic geometry. We pay special attention to reducible models and models of maximum likelihood degree one.Comment: 33 pages, 6 figure

    The degree of the central curve in semidefinite, linear, and quadratic programming

    Get PDF
    The Zariski closure of the central path which interior point algorithms track in convex optimization problems such as linear, quadratic, and semidefinite programs is an algebraic curve. The degree of this curve has been studied in relation to the complexity of these interior point algorithms, and for linear programs it was computed by De Loera, Sturmfels, and Vinzant in 2012. We show that the degree of the central curve for generic semidefinite programs is equal to the maximum likelihood degree of linear concentration models. New results from the intersection theory of the space of complete quadrics imply that this is a polynomial in the size of semidefinite matrices with degree equal to the number of constraints. Besides its degree we explore the arithmetic genus of the same curve. We also compute the degree of the central curve for generic linear programs with different techniques which extend to the computation of the same degree for generic quadratic programs.Comment: 15 page

    Average Behavior of Minimal Free Resolutions of Monomial Ideals

    Full text link
    We describe the typical homological properties of monomial ideals defined by random generating sets. We show that, under mild assumptions, random monomial ideals (RMI's) will almost always have resolutions of maximal length; that is, the projective dimension will almost always be nn, where nn is the number of variables in the polynomial ring. We give a rigorous proof that Cohen-Macaulayness is a "rare" property. We characterize when an RMI is generic/strongly generic, and when it "is Scarf"---in other words, when the algebraic Scarf complex of MS=k[x1,,xn]M\subset S=k[x_1,\ldots,x_n] gives a minimal free resolution of S/MS/M. As a result we see that, outside of a very specific ratio of model parameters, RMI's are Scarf only when they are generic. We end with a discussion of the average magnitude of Betti numbers.Comment: Final version, to appear in Proceedings of the AM

    Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs

    Full text link
    In this paper we study irreducible representations and symbolic Rees algebras of monomial ideals. Then we examine edge ideals associated to vertex-weighted oriented graphs. These are digraphs having no oriented cycles of length two with weights on the vertices. For a monomial ideal with no embedded primes we classify the normality of its symbolic Rees algebra in terms of its primary components. If the primary components of a monomial ideal are normal, we present a simple procedure to compute its symbolic Rees algebra using Hilbert bases, and give necessary and sufficient conditions for the equality between its ordinary and symbolic powers. We give an effective characterization of the Cohen--Macaulay vertex-weighted oriented forests. For edge ideals of transitive weighted oriented graphs we show that Alexander duality holds. It is shown that edge ideals of weighted acyclic tournaments are Cohen--Macaulay and satisfy Alexander dualityComment: Special volume dedicated to Professor Antonio Campillo, Springer, to appea

    Logarithmic Voronoi Cells for Gaussian Models

    Full text link
    We extend the theory of logarithmic Voronoi cells to Gaussian statistical models. In general, a logarithmic Voronoi cell at a point on a Gaussian model is a convex set contained in its log-normal spectrahedron. We show that for models of ML degree one and linear covariance models the two sets coincide. In particular, they are equal for both directed and undirected graphical models. We introduce decomposition theory of logarithmic Voronoi cells for the latter family. We also study covariance models, for which logarithmic Voronoi cells are, in general, strictly contained in log-normal spectrahedra. We give an explicit description of logarithmic Voronoi cells for the bivariate correlation model and show that they are semi-algebraic sets. Finally, we state a conjecture that logarithmic Voronoi cells for unrestricted correlation models are not semi-algebraic.Comment: 24 page

    Supernormal Vector Configurations

    No full text
    corecore