912 research outputs found
Surface-enhanced pair transfer in quadrupole states of neutron-rich Sn isotopes
We investigate the neutron pair transfer modes associated with the low-lying
quadrupole states in neutron-rich Sn isotopes by means of the quasiparticle
random phase approximation based on the Skyrme-Hartree-Fock-Bogoliubov mean
field model. The transition strength of the quadrupole pair-addition mode
feeding the state is enhanced in the Sn isotopes with . The
transition density of the pair-addition mode has a large spatial extension in
the exterior of nucleus, reaching far to fm. The quadrupole
pair-addition mode reflects sensitively a possible increase of the effective
pairing interaction strength in the surface and exterior regions of
neutron-rich nuclei.Comment: 14 page
5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal
We study two-dimensional rotation-symmetric number-conserving cellular
automata working on the von Neumann neighborhood (RNCA). It is known that such
automata with 4 states or less are trivial, so we investigate the possible
rules with 5 states. We give a full characterization of these automata and show
that they cannot be strongly Turing universal. However, we give example of
constructions that allow to embed some boolean circuit elements in a 5-states
RNCA
Analysis of mechanism of sand deposition inside a fishing port using BG model
A large amount of sand deposited in the wave-shelter zone of Ohtsu fishing port located in northern Ibaraki Prefecture, Japan, resulting in a difficulty in navigation at the pot entrance. The BG model (a three-dimensional model for predicting beach changes based on Bagnold's concept) ws used to solve this problem. Measures against sand deposition inside the port were investigated and the most appropriate measure found for preventing sand deposition was the extension of a jetty by 100 m at the tip of the west breakwater. The applicability of the BG model to such prediction was confirmed
- …